McCauley TG, Hamaguchi N, Stanton M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules.
Anal Biochem 2003;
319:244-50. [PMID:
12871718 DOI:
10.1016/s0003-2697(03)00297-5]
[Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have developed a chip-based biosensor for multiplex analysis of protein analytes. The biosensor utilizes immobilized DNA and RNA aptamers, selected against several different protein targets, to simultaneously detect and quantify levels of individual proteins in complex biological mixtures. Aptamers were each fluorescently labeled and immobilized on a glass substrate. Fluorescence polarization anisotropy was used for solid- and solution-phase measurements of target protein binding. We show that solid-phase aptamer-protein interactions recapitulate binding interactions seen in solution. Furthermore, we demonstrate specific detection and quantitation of cancer-associated proteins (inosine monophosphate dehydrogenase II, vascular endothelial factor, basic fibroblast growth factor) in the context of human serum and in cellular extracts. It is expected that this technology could speed diagnosis of cancer by enabling direct detection of the expression and modification of proteins closely correlated with disease.
Collapse