1
|
McMillan MT, Feigenberg SJ, Simone CB. Current Approaches to Radiation Oncology Target Volume Delineation Using PET/Computed Tomography. PET Clin 2025; 20:175-183. [PMID: 39909781 DOI: 10.1016/j.cpet.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
PET is a versatile imaging modality widely used in oncology for diagnosing, staging, predicting outcomes, and surveillance for a variety of cancers. In radiation oncology, combining PET and computed tomography imaging can markedly enhance treatment planning through improved target volume delineation. This review examines data and clinical approaches across 3 major cancer types to evaluate the role of PET in target volume delineation, with data and current approaches for thoracic, genitourinary, and head and neck malignancies detailed. Additionally, it emphasizes various practical applications of PET in radiation therapy planning, several of which have been recently demonstrated in clinical trials.
Collapse
Affiliation(s)
- Matthew T McMillan
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Steven J Feigenberg
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, USA; New York Proton Center, 225 East 126th Street, New York, NY 10035, USA.
| |
Collapse
|
2
|
Sathekge C, Maes J, Maes A, Van de Wiele C. FDG PET/CT for Staging Lung Carcinoma: An Update. Semin Nucl Med 2025; 55:167-174. [PMID: 40023683 DOI: 10.1053/j.semnuclmed.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 03/04/2025]
Abstract
In non-small cell lung carcinoma (NSCLC) carcinoma, the CT-part of the FDG PET/CT examination is of primary importance for T (tumor)-status assessment, while information derived from the primary tumor on the FDG-part of the examination may provide additional information on N- (lymph node) status. FDG PET/CT imaging was shown to have an overall sensitivity of 85% and a specificity of 84% for identifying LN involvement in NSCLC. Parameters that may predict the presence and quantify the risk of LN-involvement in NSCLC missed on FDG PET/CT imaging are tumor size and its increase over time, tumor differentiation degree, the number of days elapsed from the time of initial diagnosis, an adenocarcinoma subtype, a central versus peripheral location of the primary tumor and a solid versus mixed solid-ground glass radiologic character. Nomograms incorporating several of these variables have been published and made available for clinical usage. Furthermore, FDG PET/CT imaging was shown to have an overall higher sensitivity for identifying extra-thoracic metastases than convential morphological imaging and this especially for bone and adrenal lesions. In small cell lung carcinoma (SCLC), limited available data have shown FDG PET/CT imaging to be systematically more accurate for staging purposes when compared to conventional staging and to lead to a change in disease stage (limited versus extensive disease) in up to 15% of SCLC-patients.
Collapse
Affiliation(s)
- Chabi Sathekge
- Nuclear Medicine and Nuclear Medicine Research Infrastructure (NuMeRi), Pretoria 0002, South Africa; Department of Chemical Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Justine Maes
- Department of Chemical Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Alex Maes
- Nuclear Medicine and Nuclear Medicine Research Infrastructure (NuMeRi), Pretoria 0002, South Africa; Department of Nuclear Medicine, AZ Groeninge, Kortrijk 8500, Belgium; Department of Morphology and Functional Imaging, University Hospital Leuven, Leuven 3000, Belgium
| | - Christophe Van de Wiele
- Nuclear Medicine and Nuclear Medicine Research Infrastructure (NuMeRi), Pretoria 0002, South Africa; Department of Nuclear Medicine, AZ Groeninge, Kortrijk 8500, Belgium; Department of Diagnostic Sciences, University Ghent Ghent 9000, Belgium.
| |
Collapse
|
3
|
Jungblut L, Rizzo SM, Ebner L, Kobe A, Nguyen-Kim TDL, Martini K, Roos J, Puligheddu C, Afshar-Oromieh A, Christe A, Dorn P, Funke-Chambour M, Hötker A, Frauenfelder T. Advancements in lung cancer: a comprehensive perspective on diagnosis, staging, therapy and follow-up from the SAKK Working Group on Imaging in Diagnosis and Therapy Monitoring. Swiss Med Wkly 2024; 154:3843. [PMID: 39835913 DOI: 10.57187/s.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
In 2015, around 4400 individuals received a diagnosis of lung cancer, and Switzerland recorded approximately 3200 deaths related to lung cancer. Advances in detection, such as lung cancer screening and improved treatments, have led to increased identification of early-stage lung cancer and higher chances of long-term survival. This progress has introduced new considerations in imaging, emphasising non-invasive diagnosis and characterisation techniques like radiomics. Treatment aspects, such as preoperative assessment and the implementation of immune response evaluation criteria in solid tumours (iRECIST), have also seen advancements. For those undergoing curative treatment for lung cancer, guidelines propose follow-up with computed tomography (CT) scans within a specific timeframe. However, discrepancies exist in published guidelines, and there is a lack of universally accepted recommendations for follow-up procedures. This white paper aims to provide a certain standard regarding the use of imaging on the diagnosis, staging, treatment and follow-up of patients with lung cancer.
Collapse
Affiliation(s)
- Lisa Jungblut
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefania Maria Rizzo
- Service of Radiology, Imaging Institute of Southern Switzerland, Clinica Di Radiologia EOC, Lugano, Switzerland
| | - Lukas Ebner
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Adrian Kobe
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thi Dan Linh Nguyen-Kim
- Institute of Radiology and Nuclear Medicine, Stadtspital Triemli Zurich, Zurich, Switzerland
| | - Katharina Martini
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Justus Roos
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Carla Puligheddu
- Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Christe
- Department of Radiology SLS, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Hötker
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Park J, Jung M, Kim SK, Lee YH. Prediction of Bone Marrow Metastases Using Computed Tomography (CT) Radiomics in Patients with Gastric Cancer: Uncovering Invisible Metastases. Diagnostics (Basel) 2024; 14:1689. [PMID: 39125564 PMCID: PMC11312158 DOI: 10.3390/diagnostics14151689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
We investigated whether radiomics of computed tomography (CT) image data enables the differentiation of bone metastases not visible on CT from unaffected bone, using pathologically confirmed bone metastasis as the reference standard, in patients with gastric cancer. In this retrospective study, 96 patients (mean age, 58.4 ± 13.3 years; range, 28-85 years) with pathologically confirmed bone metastasis in iliac bones were included. The dataset was categorized into three feature sets: (1) mean and standard deviation values of attenuation in the region of interest (ROI), (2) radiomic features extracted from the same ROI, and (3) combined features of (1) and (2). Five machine learning models were developed and evaluated using these feature sets, and their predictive performance was assessed. The predictive performance of the best-performing model in the test set (based on the area under the curve [AUC] value) was validated in the external validation group. A Random Forest classifier applied to the combined radiomics and attenuation dataset achieved the highest performance in predicting bone marrow metastasis in patients with gastric cancer (AUC, 0.96), outperforming models using only radiomics or attenuation datasets. Even in the pathology-positive CT-negative group, the model demonstrated the best performance (AUC, 0.93). The model's performance was validated both internally and with an external validation cohort, consistently demonstrating excellent predictive accuracy. Radiomic features derived from CT images can serve as effective imaging biomarkers for predicting bone marrow metastasis in patients with gastric cancer. These findings indicate promising potential for their clinical utility in diagnosing and predicting bone marrow metastasis through routine evaluation of abdominopelvic CT images during follow-up.
Collapse
Affiliation(s)
- Jiwoo Park
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| |
Collapse
|
5
|
Imai K, Kurihara N, Konno M, Mori N, Takashima S, Kuriyama S, Demura R, Suzuki H, Harata Y, Fujibayashi T, Shibano S, Wakita A, Nagaki Y, Sato Y, Nomura K, Minamiya Y. Does clinical T1N0 GGN really require checking for distant metastasis during initial staging for lung cancer? Cancer Imaging 2024; 24:69. [PMID: 38831467 PMCID: PMC11149246 DOI: 10.1186/s40644-024-00714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Accurate clinical staging is crucial for selection of optimal oncological treatment strategies in non-small cell lung cancer (NSCLC). Although brain MRI, bone scintigraphy and whole-body PET/CT play important roles in detecting distant metastases, there is a lack of evidence regarding the indication for metastatic staging in early NSCLCs, especially ground-grass nodules (GGNs). Our aim was to determine whether checking for distant metastasis is required in cases of clinical T1N0 GGN. METHODS This was a retrospective study of initial staging using imaging tests in patients who had undergone complete surgical R0 resection for clinical T1N0 Stage IA NSCLC. RESULTS A total of 273 patients with cT1N0 GGNs (n = 183) or cT1N0 solid tumors (STs, n = 90) were deemed eligible. No cases of distant metastasis were detected on initial routine imaging evaluations. Among all cT1N0M0 cases, there were 191 incidental findings on various modalities (128 in the GGN). Most frequently detected on brain MRI was cerebral leukoaraiosis, which was found in 98/273 (35.9%) patients, while cerebral infarction was detected in 12/273 (4.4%) patients. Treatable neoplasms, including brain meningioma and thyroid, gastric, renal and colon cancers were also detected on PET/CT (and/or MRI). Among those, 19 patients were diagnosed with a treatable disease, including other-site cancers curable with surgery. CONCLUSIONS Extensive staging (MRI, scintigraphy, PET/CT etc.) for distant metastasis is not required for patients diagnosed with clinical T1N0 GGNs, though various imaging modalities revealed the presence of adventitious diseases with the potential to increase surgical risks, lead to separate management, and worsen patient outcomes, especially in elderly patients. If clinically feasible, it could be considered to complement staging with whole-body procedures including PET/CT.
Collapse
Affiliation(s)
- Kazuhiro Imai
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Nobuyasu Kurihara
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Motoko Konno
- Department of Radiology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shinogu Takashima
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shoji Kuriyama
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ryo Demura
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Haruka Suzuki
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuzu Harata
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tatsuki Fujibayashi
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sumire Shibano
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Akiyuki Wakita
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yushi Nagaki
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yusuke Sato
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kyoko Nomura
- Department of Health Environmental Science and Public Health, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
6
|
Kavurgaci S, Özmen Ö, Tatci E, Söyler Y, Cengiz Tİ, Kabalak PA, Kizilgöz D, Yilmaz Ü. Potential role of pre-treatment bone marrow SUVmean to liver SUVmean ratio (BM/L) and comparison of primary tumour FDG uptake with brain FDG uptake in predicting survival in limited-stage lung cancers. Nucl Med Commun 2024; 45:77-85. [PMID: 37779431 DOI: 10.1097/mnm.0000000000001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
INTRODUCTION The survival rates of patients with limited-stage small-cell lung cancer are low despite curative treatment. Accordingly, we investigated the disease prognosis by comparing the pre-treatment bone marrow mean standardised uptake values (SUVmean) / liver SUVmean ratio (BM/L) and primary tumour FDG uptake and brain FDG uptake to prognosis. MATERIALS AND METHODS This was an observational, retrospective, single-centre study of patients with limited-stage small-cell lung cancer. Maximum standardised uptake values before treatment SUVmax, mean SUV (SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), liver (KC) SUVmean, bone marrow SUVmean, BM/L ratio (grouped as BM/L <1 and BM/L<1), FDG uptake level of the primary tumour are higher than brain FDG uptake. The association of low prevalence with overall survival (OS) and progression-free survival (PFS) was evaluated. DISCUSSION A total of 125 patients were included in the study. The risk of death was found to be two times higher in patients with primary tumour FDG uptake higher than brain FDG uptake compared to those with less brain involvement. The risk of death in patients with BM/L>1 was found to be 1.6 times higher than in patients with BM/L<1. CONCLUSION Comparison of BM/L, FDG uptake of the primary tumour and brain FDG uptake as new prognostic parameters can be guiding in the classification of patients with LD-SCLC with a higher risk of death or progression and in planning new treatment strategies.
Collapse
Affiliation(s)
- Suna Kavurgaci
- Ankara Atatürk Sanatorium Training and Research Hospital, Pulmonology Department and
| | - Özlem Özmen
- Ankara Etlik City Hospital, Nuclear Medicine Department, Ankara, Turkey
| | - Ebru Tatci
- Ankara Etlik City Hospital, Nuclear Medicine Department, Ankara, Turkey
| | - Yasemin Söyler
- Ankara Atatürk Sanatorium Training and Research Hospital, Pulmonology Department and
| | - Tuba İnal Cengiz
- Ankara Atatürk Sanatorium Training and Research Hospital, Pulmonology Department and
| | - Pinar Akin Kabalak
- Ankara Atatürk Sanatorium Training and Research Hospital, Pulmonology Department and
| | - Derya Kizilgöz
- Ankara Atatürk Sanatorium Training and Research Hospital, Pulmonology Department and
| | - Ülkü Yilmaz
- Ankara Atatürk Sanatorium Training and Research Hospital, Pulmonology Department and
| |
Collapse
|
7
|
Borczuk AC. Neuroendocrine neoplasms of the lung. PRACTICAL PULMONARY PATHOLOGY 2024:465-496. [DOI: 10.1016/b978-0-323-79547-0.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Zhao K, Jia C, Wang J, Shi W, Wang X, Song Y, Peng C. Exosomal hsa-miR-151a-3p and hsa-miR-877-5p are potential novel biomarkers for predicting bone metastasis in lung cancer. Aging (Albany NY) 2023; 15:14864-14888. [PMID: 38180107 PMCID: PMC10781484 DOI: 10.18632/aging.205314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Exosomal miRNAs (exo-miRNAs) have arisen as novel diagnostic biomarkers for various cancers. However, few reports on exo-miRNAs related to bone metastasis (BM) in lung cancer exist. This study aims to screen out key exo-miRNAs and estimate their prognostic values for predicting BM in lung cancer. The differentially expressed exo-miRNAs between the highly-metastatic (95D) and lowly-metastatic (A549) human lung cancer cell lines were comprehensively analyzed using high-throughput sequencing followed by bioinformatic analyses. 29 candidate exo-miRNAs were identified, and 101 BM-related target genes were predicted. Enrichment analysis revealed that these target genes were mainly involved in regulating transcription and pathways in cancer. An exosomal miRNA-mRNA regulatory network consisting of 7 key miRNAs and 10 hub genes was constructed. Further function analysis indicated that these 10 hub genes were mainly enriched in regulating cancer's apoptosis and central carbon metabolism. The survival analysis indicated that 7 of 10 hub genes were closely related to prognosis. Mutation analysis showed that lung cancer patients presented certain genetic alterations in the 7 real hub genes. GSEA for a single hub gene suggested that 6 of 7 real hub genes had close associations with lung cancer development. Finally, ROC analysis revealed that hsa-miR-151a-3p and hsa-miR-877-5p provided high diagnostic accuracy in discriminating patients with bone metastasis (BM+) from patients without bone metastasis (BM-). These findings provided a comprehensive analysis of exo-miRNAs and target genes in the regulatory network of BM in lung cancer. In particular, hsa-miR-151a-3p and hsa-miR-877-5p may be novel biomarkers for predicting BM in lung cancer.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changji Jia
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jin Wang
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Weiye Shi
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changliang Peng
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
9
|
Kersting D, Sandach P, Sraieb M, Wiesweg M, Metzenmacher M, Darwiche K, Oezkan F, Bölükbas S, Stuschke M, Umutlu L, Nader M, Hamacher R, Fendler WP, Wienker J, Eberhardt WEE, Schuler M, Herrmann K, Hautzel H. 68Ga-SSO-120 PET for Initial Staging of Small Cell Lung Cancer Patients: A Single-Center Retrospective Study. J Nucl Med 2023; 64:1540-1549. [PMID: 37474272 DOI: 10.2967/jnumed.123.265664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Indexed: 07/22/2023] Open
Abstract
PET imaging using the somatostatin receptor 2 (SSTR2) antagonist satoreotide trizoxetan (SSO-120, previously OPS-202) could offer accurate tumor detection and screening for SSTR2-antagonist radionuclide therapy in patients with SSTR2-expressing small cell lung cancer (SCLC). The aim of this single-center study was to investigate tumor uptake and detection rates of 68Ga-SSO-120 in comparison to 18F-FDG PET in the initial staging of SCLC patients. Methods: Patients with newly diagnosed SCLC who underwent additional whole-body 68Ga-SSO-120 PET/CT during the initial diagnostic workup were retrospectively included. The mean administered activity was 139 MBq, and the mean uptake time was 60 min. Gold-standard staging 18F-FDG PET/CT was evaluated if available within 2 wk before or after 68Ga-SSO-120 PET if morphologic differences in CT images were absent. 68Ga-SSO-120- or 18F-FDG-positive lesions were reported in 7 anatomic regions (primary tumor, thoracic lymph node metastases, and distant metastases including pleural, contralateral pulmonary, liver, bone, and other) according to the TNM classification for lung cancer (eighth edition). Consensus TNM staging (derived from CT, endobronchial ultrasound-guided transbronchial needle aspiration, PET, and brain MRI) by a clinical tumor board served as the reference standard. Results: Thirty-one patients were included, 12 with limited and 19 with extensive disease according to the Veterans Administration Lung Study Group classification. 68Ga-SSO-120-positive tumor was detected in all patients (100%) and in 90 of the 217 evaluated regions (41.5%). Thirteen patients (42.0%) had intense average 68Ga-SSO-120 uptake (region-based mean SUVmax ≥ 10); 28 patients (90.3%) had average 68Ga-SSO-120 uptake greater than liver uptake (region-based mean peak tumor-to-liver ratio > 1). In 25 patients with evaluable 18F-FDG PET, primary tumor, thoracic lymph node metastases, and distant metastases were detected in 100%, 92%, and 64%, respectively, of all investigated patients by 68Ga-SSO-120 and in 100%, 92%, and 56%, respectively, by 18F-FDG PET. 68Ga-SSO-120 PET detected additional contralateral lymph node, liver, and brain metastases in 1, 1, and 2 patients, respectively (no histopathology available), and 18F-FDG PET detected additional contralateral lymph node metastases in 3 patients (1 confirmed, 1 systematic endobronchial ultrasound-guided transbronchial needle aspiration-negative, and 1 without available histopathology). None of these differences altered Veterans Administration Lung Study Group staging. The region-based monotonic correlation between 68Ga-SSO-120 and 18F-FDG uptake was low (Spearman ρ = 0.26-0.33). Conclusion: 68Ga-SSO-120 PET offers high diagnostic precision with comparable detection rates and additional complementary information to the gold standard, 18F-FDG PET. Consistent uptake in most patients warrants exploration of SSTR2-directed radionuclide therapy.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Patrick Sandach
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Miriam Sraieb
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Marcel Wiesweg
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Metzenmacher
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Filiz Oezkan
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Servet Bölükbas
- Department of Thoracic Surgery and Thoracic Endoscopy, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Michael Nader
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Johannes Wienker
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
10
|
Covington MF, Koppula BR, Fine GC, Salem AE, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology: II. Primary Thoracic and Breast Malignancies. Cancers (Basel) 2022; 14:cancers14112689. [PMID: 35681669 PMCID: PMC9179296 DOI: 10.3390/cancers14112689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Positron emission tomography (PET), typically combined with computed tomography (CT), has become a critical advanced imaging technique in oncology. With PET-CT, a radioactive molecule (radiotracer) is injected in the bloodstream and localizes to sites of tumor because of specific cellular features of the tumor that accumulate the targeting radiotracer. The CT scan, performed at the same time, provides information to facilitate assessment of the amount of radioactivity from deep or dense structures, and to provide detailed anatomic information. PET-CT has a variety of applications in oncology, including staging, therapeutic response assessment, restaging, and surveillance. This series of six review articles provides an overview of the value, applications, and imaging and interpretive strategies of PET-CT in the more common adult malignancies. The second article in this series addresses the use of PET-CT in breast cancer and other primary thoracic malignancies. Abstract Positron emission tomography combined with x-ray computed tomography (PET-CT) is an advanced imaging modality with oncologic applications that include staging, therapy assessment, restaging, and surveillance. This six-part series of review articles provides practical information to providers and imaging professionals regarding the best use of PET-CT for the more common adult malignancies. The second article of this series addresses primary thoracic malignancy and breast cancer. For primary thoracic malignancy, the focus will be on lung cancer, malignant pleural mesothelioma, thymoma, and thymic carcinoma, with an emphasis on the use of FDG PET-CT. For breast cancer, the various histologic subtypes will be addressed, and will include 18F fluorodeoxyglucose (FDG), recently Food and Drug Administration (FDA)-approved 18F-fluoroestradiol (FES), and 18F sodium fluoride (NaF). The pitfalls and nuances of PET-CT in breast and primary thoracic malignancies and the imaging features that distinguish between subcategories of these tumors are addressed. This review will serve as a resource for the appropriate roles and limitations of PET-CT in the clinical management of patients with breast and primary thoracic malignancies for healthcare professionals caring for adult patients with these cancers. It also serves as a practical guide for imaging providers, including radiologists, nuclear medicine physicians, and their trainees.
Collapse
Affiliation(s)
- Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
- Department of Radiodiagnosis and Intervention, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
- Intermountain Healthcare Hospitals, Summit Physician Specialists, Murray, UT 84123, USA
- Correspondence: ; Tel.: +1-801-581-7553
| |
Collapse
|
11
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Ganti AKP, Loo BW, Bassetti M, Blakely C, Chiang A, D'Amico TA, D'Avella C, Dowlati A, Downey RJ, Edelman M, Florsheim C, Gold KA, Goldman JW, Grecula JC, Hann C, Iams W, Iyengar P, Kelly K, Khalil M, Koczywas M, Merritt RE, Mohindra N, Molina J, Moran C, Pokharel S, Puri S, Qin A, Rusthoven C, Sands J, Santana-Davila R, Shafique M, Waqar SN, Gregory KM, Hughes M. Small Cell Lung Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:1441-1464. [PMID: 34902832 DOI: 10.6004/jnccn.2021.0058] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Small Cell Lung Cancer (SCLC) provide recommended management for patients with SCLC, including diagnosis, primary treatment, surveillance for relapse, and subsequent treatment. This selection for the journal focuses on metastatic (known as extensive-stage) SCLC, which is more common than limited-stage SCLC. Systemic therapy alone can palliate symptoms and prolong survival in most patients with extensive-stage disease. Smoking cessation counseling and intervention should be strongly promoted in patients with SCLC and other high-grade neuroendocrine carcinomas. The "Summary of the Guidelines Updates" section in the SCLC algorithm outlines the most recent revisions for the 2022 update, which are described in greater detail in this revised Discussion text.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Afshin Dowlati
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | | | - John C Grecula
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Christine Hann
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | | - Robert E Merritt
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Nisha Mohindra
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Cesar Moran
- The University of Texas MD Anderson Cancer Center
| | | | - Sonam Puri
- Huntsman Cancer Institute at the University of Utah
| | - Angel Qin
- University of Michigan Rogel Cancer Center
| | | | - Jacob Sands
- Dana Farber/Brigham and Women's Cancer Center
| | | | | | - Saiama N Waqar
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | |
Collapse
|
13
|
Chai X, Yinwang E, Wang Z, Wang Z, Xue Y, Li B, Zhou H, Zhang W, Wang S, Zhang Y, Li H, Mou H, Sun L, Qu H, Wang F, Zhang Z, Chen T, Ye Z. Predictive and Prognostic Biomarkers for Lung Cancer Bone Metastasis and Their Therapeutic Value. Front Oncol 2021; 11:692788. [PMID: 34722241 PMCID: PMC8552022 DOI: 10.3389/fonc.2021.692788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Bone metastasis, which usually accompanies severe skeletal-related events, is the most common site for tumor distant dissemination and detected in more than one-third of patients with advanced lung cancer. Biopsy and imaging play critical roles in the diagnosis of bone metastasis; however, these approaches are characterized by evident limitations. Recently, studies regarding potential biomarkers in the serum, urine, and tumor tissue, were performed to predict the bone metastases and prognosis in patients with lung cancer. In this review, we summarize the findings of recent clinical research studies on biomarkers detected in samples obtained from patients with lung cancer bone metastasis. These markers include the following: (1) bone resorption-associated markers, such as N-terminal telopeptide (NTx)/C-terminal telopeptide (CTx), C-terminal telopeptide of type I collagen (CTx-I), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), pyridinoline (PYD), and parathyroid hormone related peptide (PTHrP); (2) bone formation-associated markers, including total serum alkaline phosphatase (ALP)/bone specific alkaline phosphatase(BAP), osteopontin (OP), osteocalcin (OS), amino-terminal extension propeptide of type I procollagen/carboxy-terminal extension propeptide of type I procollagen (PICP/PINP); (3) signaling markers, including epidermal growth factor receptor/Kirsten rat sarcoma/anaplastic lymphoma kinase (EGFR/KRAS/ALK), receptor activator of nuclear factor κB ligand/receptor activator of nuclear factor κB/osteoprotegerin (RANKL/RANK/OPG), C-X-C motif chemokine ligand 12/C-X-C motif chemokine receptor 4 (CXCL12/CXCR4), complement component 5a receptor (C5AR); and (4) other potential markers, such as calcium sensing receptor (CASR), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2), cytokeratin 19 fragment/carcinoembryonic antigen (CYFRA/CEA), tissue factor, cell-free DNA, long non-coding RNA, and microRNA. The prognostic value of these markers is also investigated. Furthermore, we listed some clinical trials targeting hotspot biomarkers in advanced lung cancer referring for their therapeutic effects.
Collapse
Affiliation(s)
- Xupeng Chai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Eloy Yinwang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yongxing Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Haochen Mou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Fangqian Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zengjie Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Jain P, Khorrami M, Gupta A, Rajiah P, Bera K, Viswanathan VS, Fu P, Dowlati A, Madabhushi A. Novel Non-Invasive Radiomic Signature on CT Scans Predicts Response to Platinum-Based Chemotherapy and Is Prognostic of Overall Survival in Small Cell Lung Cancer. Front Oncol 2021; 11:744724. [PMID: 34745966 PMCID: PMC8564480 DOI: 10.3389/fonc.2021.744724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive malignancy characterized by initial chemosensitivity followed by resistance and rapid progression. Presently, there are no predictive biomarkers that can accurately guide the use of systemic therapy in SCLC patients. This study explores the role of radiomic features from both within and around the tumor lesion on pretreatment CT scans to a) prognosticate overall survival (OS) and b) predict response to chemotherapy. METHODS One hundred fifty-three SCLC patients who had received chemotherapy were included. Lung tumors were contoured by an expert reader. The patients were divided randomly into approximately equally sized training (Str = 77) and test sets (Ste = 76). Textural descriptors were extracted from the nodule (intratumoral) and parenchymal regions surrounding the nodule (peritumoral). The clinical endpoints of this study were OS, progression-free survival (PFS), and best objective response to chemotherapy. Patients with complete or partial response were defined as "responders," and those with stable or progression of disease were defined as "non-responders." The radiomic risk score (RRS) was generated by using the least absolute shrinkage and selection operator (LASSO) with the Cox regression model. Patients were classified into the high-risk or low-risk groups based on the median of RRS. Association of the radiomic signature with OS was evaluated on Str and then tested on Ste. The features identified by LASSO were then used to train a linear discriminant analysis (LDA) classifier (MRad) to predict response to chemotherapy. A prognostic nomogram (NRad+Clin) was also developed on Str by combining clinical and prognostic radiomic features and validated on Ste. The Kaplan-Meier survival analysis and log-rank statistical tests were performed to assess the discriminative ability of the features. The discrimination performance of the NRad+Clin was assessed by Harrell's C-index. To estimate the clinical utility of the nomogram, decision curve analysis (DCA) was performed by calculating the net benefits for a range of threshold probabilities in predicting which high-risk patients should receive more aggressive treatment as compared with the low-risk patients. RESULTS A univariable Cox regression analysis indicated that RRS was significantly associated with OS in Str (HR: 1.53; 95% CI, [1.1-2.2; p = 0.021]; C-index = 0.72) and Ste (HR: 1.4, [1.1-1.82], p = 0.0127; C-index = 0.69). The RRS was also significantly associated with PFS in Str (HR: 1.89, [1.4-4.61], p = 0.047; C-index = 0.7) and Ste (HR: 1.641, [1.1-2.77], p = 0.04; C-index = 0.67). MRad was able to predict response to chemotherapy with an area under the receiver operating characteristic curve (AUC) of 0.76 ± 0.03 within Str and 0.72 within Ste. Predictors, including the RRS, gender, age, stage, and smoking status, were used in the prognostic nomogram. The discrimination ability of the NRad+Clin model on Str and Ste was C-index [95% CI]: 0.68 [0.66-0.71] and 0.67 [0.63-0.69], respectively. DCA indicated that the NRad+Clin model was clinically useful. CONCLUSIONS Radiomic features extracted within and around the lung tumor on CT images were both prognostic of OS and predictive of response to chemotherapy in SCLC patients.
Collapse
Affiliation(s)
- Prantesh Jain
- Department of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mohammadhadi Khorrami
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Prabhakar Rajiah
- Department of Radiology, Mayo Clinic Minnesota, Rochester, MN, United States
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Vidya Sankar Viswanathan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University (CWRU), Cleveland, OH, United States
| | - Afshin Dowlati
- Department of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, United States
| |
Collapse
|
15
|
Chen P, Chen Xu R, Chen N, Zhang L, Zhang L, Zhu J, Pan B, Wang B, Guo W. Detection of Metastatic Tumor Cells in the Bone Marrow Aspirate Smears by Artificial Intelligence (AI)-Based Morphogo System. Front Oncol 2021; 11:742395. [PMID: 34646779 PMCID: PMC8503678 DOI: 10.3389/fonc.2021.742395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Metastatic carcinomas of bone marrow (MCBM) are characterized as tumors of non-hematopoietic origin spreading to the bone marrow through blood or lymphatic circulation. The diagnosis is critical for tumor staging, treatment selection and prognostic risk stratification. However, the identification of metastatic carcinoma cells on bone marrow aspiration smears is technically challenging by conventional microscopic screening. Objective The aim of this study is to develop an automatic recognition system using deep learning algorithms applied to bone marrow cells image analysis. The system takes advantage of an artificial intelligence (AI)-based method in recognizing metastatic atypical cancer clusters and promoting rapid diagnosis. Methods We retrospectively reviewed metastatic non-hematopoietic malignancies in bone marrow aspirate smears collected from 60 cases of patients admitted to Zhongshan Hospital. High resolution digital bone marrow aspirate smear images were generated and automatically analyzed by Morphogo AI based system. Morphogo system was trained and validated using 20748 cell cluster images from randomly selected 50 MCBM patients. 5469 pre-classified cell cluster images from the remaining 10 MCBM patients were used to test the recognition performance between Morphogo and experienced pathologists. Results Morphogo exhibited a sensitivity of 56.6%, a specificity of 91.3%, and an accuracy of 82.2% in the recognition of metastatic cancer cells. Morphogo’s classification result was in general agreement with the conventional standard in the diagnosis of metastatic cancer clusters, with a Kappa value of 0.513. The test results between Morphogo and pathologists H1, H2 and H3 agreement demonstrated a reliability coefficient of 0.827. The area under the curve (AUC) for Morphogo to diagnose the cancer cell clusters was 0.865. Conclusion In patients with clinical history of cancer, the Morphogo system was validated as a useful screening tool in the identification of metastatic cancer cells in the bone marrow aspirate smears. It has potential clinical application in the diagnostic assessment of metastatic cancers for staging and in screening MCBM during morphology examination when the symptoms of the primary site are indolent.
Collapse
Affiliation(s)
- Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Run Chen Xu
- Department of Medical Development, Hangzhou ZhiWei Information Technology Co. Ltd., Hangzhou, China
| | - Nan Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Prognostic Value of 18F-FDG-PET Parameters in Patients with Small Cell Lung Cancer: A Meta-Analysis and Review of Current Literature. Diagnostics (Basel) 2021; 11:diagnostics11020174. [PMID: 33530446 PMCID: PMC7912276 DOI: 10.3390/diagnostics11020174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/29/2023] Open
Abstract
Many studies have suggested a prognostic value of one or several positron emission tomography (PET) parameters in patients with small cell lung cancer (SCLC). However, studies are often small, and there is a considerable interstudy disagreement about which PET parameters have a prognostic value. The objective of this study was to perform a review and meta-analysis to identify the most promising PET parameter for prognostication. PubMed®, Cochrane, and Embase® were searched for papers addressing the prognostic value of any PET parameter at any treatment phase with any endpoint in patients with SCLC. Pooled hazard ratios (HRs) were calculated by a random effects model for the prognostic value of the baseline maximum standardized uptake value (SUVmax) and metabolic tumor volume (MTV). The qualitative analysis included 38 studies, of these, 19 studies were included in the meta-analyses. The pooled results showed that high baseline MTV was prognostic for overall survival (OS) (HR: 2.83 (95% confidence interval [CI]: 2.00–4.01) and progression-free survival (PFS) (HR: 3.11 (95% CI: 1.99–4.90)). The prognostic value of SUVmax was less pronounced (OS: HR: 1.50 (95% CI: 1.17–1.91); PFS: HR: 1.24 (95% CI: 0.94–1.63)). Baseline MTV is a strong prognosticator for OS and PFS in patients with SCLC. MTV has a prognostic value superior to those of other PET parameters, but whether MTV is superior to other prognosticators of tumor burden needs further investigation.
Collapse
|
17
|
Chung JH, Kang SY, Wu HG, Seo YS, Kim DW, Kang KW, Kim HJ, Cheon GJ. Risk stratification of symptomatic brain metastases by clinical and FDG PET parameters for selective use of prophylactic cranial irradiation in patients with extensive disease of small cell lung cancer. Radiother Oncol 2020; 143:81-87. [PMID: 32044172 DOI: 10.1016/j.radonc.2020.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To identify risk factors for developing symptomatic brain metastases and evaluate the impact of prophylactic cranial irradiation (PCI) on brain metastasis-free survival (BMFS) and overall survival (OS) in extensive disease small cell lung cancer (ED-SCLC). MATERIALS AND METHODS Among 190 patients diagnosed with ED-SCLC who underwent FDG PET/CT and brain Magnetic Resonance Imaging (MRI) prior to treatment, 53 (27.9%) received PCI while 137 (72.1%) did not. Prognostic index predicting a high risk of symptomatic brain metastases was calculated for the group without receiving PCI (observation group, n = 137) with Cox regression model. RESULTS Median follow-up time was 10.6 months. Multivariate Cox regression showed that the following three factors were associated with a high risk of symptomatic brain metastases: the presence of extrathoracic metastases (p = 0.004), hypermetabolism of bone marrow or spleen on FDG PET (p < 0.001), and high neutrophil-to-lymphocyte ratio (p = 0.018). PCI significantly improved BMFS in high-risk patients (1-year rate: 94.7% vs. 62.1%, p = 0.001), but not in low-risk patients (1-year rate: 100.0% vs. 87.7%, p = 0.943). However, PCI did not improve OS in patients at high risk for symptomatic brain metastases (1-year rate: 65.2% vs. 50.0%, p = 0.123). CONCLUSION Three prognostic factors (the presence of extrathoracic metastases, hypermetabolism of bone marrow or spleen on FDG PET, and high neutrophil-to-lymphocyte ratio) were associated with a high risk of symptomatic brain metastases in ED-SCLC. PCI was beneficial for patients at a high risk of symptomatic brain metastases in terms of BMFS, but not OS. Thus, selective use of PCI in ED-SCLC according to the risk stratification is recommended.
Collapse
Affiliation(s)
- Joo-Hyun Chung
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Seo Young Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Seok Seo
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
18
|
Martucci F, Pascale M, Valli MC, Pesce GA, Froesch P, Giovanella L, Richetti A, Treglia G. Impact of 18F-FDG PET/CT in Staging Patients With Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2020; 6:336. [PMID: 32118000 PMCID: PMC7025551 DOI: 10.3389/fmed.2019.00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Molecular imaging methods are currently used in the management of patients with lung cancer. Compared to non-small cell lung cancer, less data are available about the impact of molecular imaging using fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in staging patients with small cell lung cancer (SCLC). Performing a systematic review and meta-analysis, we aimed to provide quantitative data about the impact of 18F-FDG PET/CT in staging SCLC. Methods: A comprehensive literature search of studies on the use of 18F-FDG PET/CT in patients with SCLC was performed. Three different databases were screened (PubMed/MEDLINE, EMBASE, and Cochrane library databases) until June 2019. Only articles describing the impact of 18F-FDG PET/CT in staging patients with SCLC were selected. A pooled analysis evaluating the change of binary SCLC staging (limited-stage vs. extensive-stage disease) using 18F-FDG PET/CT was carried out. Results: Nine articles including 721 patients with SCLC were included in the systematic review. Compared to conventional staging, a superior diagnostic accuracy of 18F-FDG PET/CT was found. A change of binary SCLC staging using 18F-FDG PET/CT was demonstrated in 15% (95% confidence interval, 9–21%) of patients with SCLC. Currently, it is not clearly demonstrated that the use of 18F-FDG PET/CT for staging may improve the survival outcome of patients with SCLC. Conclusions:18F-FDG PET/CT is a useful molecular imaging method for staging patients with SCLC because it can change the management in a significant number of patients. More large prospective studies and cost-effectiveness analyses on the impact of 18F-FDG PET/CT in staging patients with SCLC are needed.
Collapse
Affiliation(s)
- Francesco Martucci
- Clinic of Radiation Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Mariarosa Pascale
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Maria Carla Valli
- Clinic of Radiation Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Gianfranco A Pesce
- Clinic of Radiation Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Patrizia Froesch
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Luca Giovanella
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Antonella Richetti
- Clinic of Radiation Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Health Technology Assessment Unit, Academic Education, Research and Innovation Area, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| |
Collapse
|
19
|
PET in Lung Cancer and Mediastinal Malignancies. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, Elcim Y, Gundem E, Dirican B, Beyzadeoglu M. Utility of Molecular Imaging with 2-Deoxy-2-[Fluorine-18] Fluoro-DGlucose Positron Emission Tomography (18F-FDG PET) for Small Cell Lung Cancer (SCLC): A Radiation Oncology Perspective. Curr Radiopharm 2019; 12:4-10. [PMID: 30465520 DOI: 10.2174/1874471012666181120162434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Although accounting for a relatively small proportion of all lung cancers, small cell lung cancer (SCLC) remains to be a global health concern with grim prognosis. Radiotherapy (RT) plays a central role in SCLC management either as a curative or palliative therapeutic strategy. There has been considerable progress in RT of SCLC, thanks to improved imaging techniques leading to accurate target localization for precise delivery of RT. Positron emission tomography (PET) is increasingly used in oncology practice as a non-invasive molecular imaging modality. METHODS Herein, we review the utility of molecular imaging with 2-deoxy-2-[fluorine-18] fluoro-Dglucose PET (18F-FDG PET) for SCLC from a radiation oncology perspective. RESULTS There has been extensive research on the utility of PET for SCLC in terms of improved staging, restaging, treatment designation, patient selection for curative/palliative intent, target localization, response assessment, detection of residual/recurrent disease, and prediction of treatment outcomes. CONCLUSION PET provides useful functional information as a non-invasive molecular imaging modality and may be exploited to improve the management of patients with SCLC. Incorporation of PET/CT in staging of patients with SCLC may aid in optimal treatment allocation for an improved therapeutic ratio. From a radiation oncology perspective, combination of functional and anatomical data provided by integrated PET/CT improves discrimination between atelectasis and tumor, and assists in the designation of RT portals with its high accuracy to detect intrathoracic tumor and nodal disease. Utility of molecular imaging for SCLC should be further investigated in prospective randomized trials to acquire a higher level of evidence for future potential applications of PET.
Collapse
Affiliation(s)
- Omer Sager
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Ferrat Dincoglan
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Selcuk Demiral
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Bora Uysal
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Hakan Gamsiz
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Yelda Elcim
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Esin Gundem
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Bahar Dirican
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Murat Beyzadeoglu
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| |
Collapse
|
21
|
Hong JC, Boyer MJ, Spiegel DY, Williams CD, Tong BC, Shofer SL, Moravan MJ, Kelley MJ, Salama JK. Increasing PET Use in Small Cell Lung Cancer: Survival Improvement and Stage Migration in the VA Central Cancer Registry. J Natl Compr Canc Netw 2019; 17:127-139. [PMID: 30787126 DOI: 10.6004/jnccn.2018.7090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/17/2018] [Indexed: 11/17/2022]
Abstract
Background: Accurate staging for small cell lung cancer (SCLC) is critical for determining appropriate therapy. The clinical impact of increasing PET adoption and stage migration is well described in non-small cell lung cancer but not in SCLC. The objective of this study was to evaluate temporal trends in PET staging and survival in the Veterans Affairs Central Cancer Registry and the impact of PET on outcomes. Patients and Methods: Patients diagnosed with SCLC from 2001 to 2010 were identified. PET staging, overall survival (OS), and lung cancer-specific survival (LCSS) were assessed over time. The impact of PET staging on OS and LCSS was assessed for limited-stage (LS) and extensive-stage (ES) SCLC. Results: From 2001 to 2010, PET use in a total of 10,135 patients with SCLC increased from 1.1% to 39.2%. Median OS improved for all patients (from 6.2 to 7.9 months), those with LS-SCLC (from 10.9 to 13.2 months), and those with ES-SCLC (from 5.0 to 7.0 months). Among staged patients, the proportion of ES-SCLC increased from 63.9% to 65.7%. Among 1,536 patients with LS-SCLC treated with concurrent chemoradiotherapy, 397 were staged by PET. In these patients, PET was associated with longer OS (median, 19.8 vs 14.3 months; hazard ratio [HR], 0.78; 95% CI, 0.68-0.90; P<.0001) and LCSS (median, 22.9 vs 16.7 months; HR, 0.74; 95% CI, 0.63-0.87; P<.0001) with multivariate adjustment and propensity-matching. In the 6,143 patients with ES-SCLC, PET was also associated with improved OS and LCSS. Conclusions: From 2001 to 2010, PET staging increased in this large cohort, with a corresponding relative increase in ES-SCLC. PET was associated with greater OS and LCSS for LS-SCLC and ES-SCLC, likely reflecting stage migration and stage-appropriate therapy. These findings emphasize the importance of PET in SCLC and support its routine use.
Collapse
Affiliation(s)
- Julian C Hong
- aDepartment of Radiation Oncology, Duke University, Durham, North Carolina
| | - Matthew J Boyer
- aDepartment of Radiation Oncology, Duke University, Durham, North Carolina
- bDepartment of Radiation Oncology, Greater Baltimore Medical Center, Baltimore, Maryland
| | - Daphna Y Spiegel
- aDepartment of Radiation Oncology, Duke University, Durham, North Carolina
| | - Christina D Williams
- cCooperative Studies Program Epidemiology Center-Durham, Durham Veterans Administration Medical Center, Durham, North Carolina; Divisions of
| | - Betty C Tong
- dCardiovascular and Thoracic Surgery, Department of Surgery
| | - Scott L Shofer
- ePulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Michael J Moravan
- aDepartment of Radiation Oncology, Duke University, Durham, North Carolina
| | - Michael J Kelley
- fMedical Oncology, Department of Medicine, Duke University, Durham, North Carolina; and
- gDivision of Hematology-Oncology, Medical Service, Durham Veterans Administration Medical Center, Durham, North Carolina
| | - Joseph K Salama
- aDepartment of Radiation Oncology, Duke University, Durham, North Carolina
| |
Collapse
|
22
|
Rami-Porta R, Call S, Dooms C, Obiols C, Sánchez M, Travis WD, Vollmer I. Lung cancer staging: a concise update. Eur Respir J 2018; 51:13993003.00190-2018. [PMID: 29700105 DOI: 10.1183/13993003.00190-2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Diagnosis and clinical staging of lung cancer are fundamental to planning therapy. The techniques for clinical staging, i.e anatomic and metabolic imaging, endoscopies and minimally invasive surgical procedures, should be performed sequentially and with an increasing degree of invasiveness. Intraoperative staging, assessing the magnitude of the primary tumour, the involved structures, and the loco-regional lymphatic spread by means of systematic nodal dissection, is essential in order to achieve a complete resection. In resected tumours, pathological staging, with the systematic study of the resected specimens, is the strongest prognostic indicator and is essential to make further decisions on therapy. In the present decade, the guidelines on lung cancer staging of the American College of Chest Physicians and the European Society of Thoracic Surgeons are based on the best available evidence and are widely followed. Recent advances in the classification of the adenocarcinoma of the lung, with the definition of adenocarcinoma in situ, minimally invasive adenocarcinoma and lepidic predominant adenocarcinoma, and the publication of the eighth edition of the tumour, node and metastasis classification of lung cancer, have to be integrated into the staging process. The present review complements the latest guidelines on lung cancer staging by providing an update of all these issues.
Collapse
Affiliation(s)
- Ramón Rami-Porta
- Dept of Thoracic Surgery, Hospital Universitari Mutua Terrassa, University of Barcelona, Barcelona, Spain.,Network of Centres for Biomedical Research in Respiratory Diseases (CIBERES) Lung Cancer Group, Barcelona, Spain
| | - Sergi Call
- Dept of Thoracic Surgery, Hospital Universitari Mutua Terrassa, University of Barcelona, Barcelona, Spain.,Dept of Morphological Sciences, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christophe Dooms
- Dept of Respiratory Diseases, University Hospitals, KU Leuven, Leuven, Belgium
| | - Carme Obiols
- Dept of Thoracic Surgery, Hospital Universitari Mutua Terrassa, University of Barcelona, Barcelona, Spain
| | - Marcelo Sánchez
- Centre of Imaging Diagnosis, Radiology Dept, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - William D Travis
- Dept of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan Vollmer
- Centre of Imaging Diagnosis, Radiology Dept, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Performance Comparison Between 18F-FDG PET/CT Plus Brain MRI and Conventional Staging Plus Brain MRI in Staging of Small Cell Lung Carcinoma. AJR Am J Roentgenol 2018; 211:185-192. [PMID: 29667886 DOI: 10.2214/ajr.17.18935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The purpose of this study was to prospectively compare the capabilities of integrated FDG PET/CT and conventional staging for identification of TNM factors, evaluation of the TNM and Veterans Administration Lung Study Group (VALSG) stages, and selection of patients with stage I small cell lung carcinoma (SCLC). SUBJECTS AND METHODS Fifty-nine patients (mean age, 69.6 ± 7.8 [SD] years; range, 40-84 years) with pathologically diagnosed SCLC underwent integrated 18F-FDG PET/CT and conventional staging with enhanced brain MRI. TNM and VALSG stages were evaluated by two different reader groups. Kappa statistics and chi-square test result were determined for evaluations of interobserver agreement of all factors and for each clinical stage for both methods. Diagnostic accuracy of identification of each factor and clinical stage was statistically compared by McNemar test. RESULTS Interobserver agreements for all factors and each clinical stage were assessed as almost perfect for PET/CT (0.83 ≤ κ ≤ 0.93; p < 0.001) and substantial and almost perfect (0.63 ≤ κ ≤ 0.96; p < 0.001) for conventional staging plus enhanced brain MRI. The diagnostic accuracy of PET/CT for N factor and TNM stage (N, 89.8% [53/59]; TNM stage, 88.1% [52/59]) was significantly higher than that of conventional staging plus enhanced brain MRI (N, 67.8% [40/59], p = 0.0002; TNM stage, 72.9% [43/59], p = 0.004). CONCLUSION Integrated FDG PET/CT with contrast-enhanced brain MRI is potentially equal to or more effective than conventional staging plus enhanced brain MRI for T, N, and M assessment and TNM and VALSG staging of SCLC.
Collapse
|
24
|
Borczuk AC. Neuroendocrine Neoplasms of the Lung. PRACTICAL PULMONARY PATHOLOGY: A DIAGNOSTIC APPROACH 2018:439-466.e5. [DOI: 10.1016/b978-0-323-44284-8.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Jadvar H, Colletti PM, Delgado-Bolton R, Esposito G, Krause BJ, Iagaru AH, Nadel H, Quinn DI, Rohren E, Subramaniam RM, Zukotynski K, Kauffman J, Ahuja S, Griffeth L. Appropriate Use Criteria for 18F-FDG PET/CT in Restaging and Treatment Response Assessment of Malignant Disease. J Nucl Med 2017; 58:2026-2037. [DOI: 10.2967/jnumed.117.197988] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
|
26
|
Finkle JH, Jo SY, Ferguson MK, Liu HY, Zhang C, Zhu X, Yuan C, Pu Y. Risk-stratifying capacity of PET/CT metabolic tumor volume in stage IIIA non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2017; 44:1275-1284. [PMID: 28265739 PMCID: PMC6048959 DOI: 10.1007/s00259-017-3659-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Stage IIIA non-small cell lung cancer (NSCLC) is heterogeneous in tumor burden, and its treatment is variable. Whole-body metabolic tumor volume (MTVWB) has been shown to be an independent prognostic index for overall survival (OS). However, the potential of MTVWB to risk-stratify stage IIIA NSCLC has previously been unknown. If we can identify subgroups within the stage exhibiting significant OS differences using MTVWB, MTVWB may lead to adjustments in patients' risk profile evaluations and may, therefore, influence clinical decision making regarding treatment. We estimated the risk-stratifying capacity of MTVWB in stage IIIA by comparing OS of stratified stage IIIA with stage IIB and IIIB NSCLC. METHODS We performed a retrospective review of 330 patients with clinical stage IIB, IIIA, and IIIB NSCLC diagnosed between 2004 and 2014. The patients' clinical TNM stage, initial MTVWB, and long-term survival data were collected. Patients with TNM stage IIIA disease were stratified by MTVWB. The optimal MTVWB cutoff value for stage IIIA patients was calculated using sequential log-rank tests. Univariate and multivariate cox regression analyses and Kaplan-Meier OS analysis with log-rank tests were performed. RESULTS The optimal MTVWB cut-point was 29.2 mL for the risk-stratification of stage IIIA. We identified statistically significant differences in OS between stage IIB and IIIA patients (p < 0.01), between IIIA and IIIB patients (p < 0.01), and between the stage IIIA patients with low MTVWB (below 29.2 mL) and the stage IIIA patients with high MTVWB (above 29.2 mL) (p < 0.01). There was no OS difference between the low MTVWB stage IIIA and the cohort of stage IIB patients (p = 0.485), or between the high MTVWB stage IIIA patients and the cohort of stage IIIB patients (p = 0.459). Similar risk-stratification capacity of MTVWB was observed in a large range of cutoff values from 15 to 55 mL in stage IIIA patients. CONCLUSIONS Using MTVWB cutoff points ranging from 15 to 55 mL with an optimal value of 29.2 mL, stage IIIA NSCLC may be effectively stratified into subgroups with no significant survival difference from stages IIB or IIIB NSCLC. This may result in more accurate survival estimation and more appropriate risk adapted treatment selection in stage IIIA NSCLC.
Collapse
Affiliation(s)
- Joshua H Finkle
- Department of Radiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Stephanie Y Jo
- Department of Radiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Mark K Ferguson
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Hai-Yan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenpeng Zhang
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuee Zhu
- Department of Radiology, BenQ Medical Center, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Cindy Yuan
- Department of Radiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Yonglin Pu
- Department of Radiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
| |
Collapse
|
27
|
Berberoğlu K. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer. Mol Imaging Radionucl Ther 2016; 25:50-62. [PMID: 27277321 PMCID: PMC5096621 DOI: 10.4274/mirt.19870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT) during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT) has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases inter-user variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.
Collapse
Affiliation(s)
- Kezban Berberoğlu
- Anadolu Medical Center, Clinic of Nuclear Medicine, İstanbul, Turkey, Phone: +90 532 584 62 56 E-mail:
| |
Collapse
|
28
|
Mitchell MD, Aggarwal C, Tsou AY, Torigian DA, Treadwell JR. Imaging for the Pretreatment Staging of Small cell Lung Cancer: A Systematic Review. Acad Radiol 2016; 23:1047-56. [PMID: 27259379 DOI: 10.1016/j.acra.2016.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/24/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive form of lung cancer. Accurate staging is essential to select the optimal treatment plan to maximize survival. No consensus exists on standard imaging modalities for pretreatment staging of SCLC. MATERIALS AND METHODS We conducted a systematic review of the literature on imaging modalities in the pretreatment staging of SCLC. A systematic search of multiple databases identified relevant studies published from 2000 through June 2015. Outcomes of interest included test concordance, staging accuracy (sensitivity and specificity), choice of treatment, timeliness of treatment, and patient outcomes. RESULTS The search identified 2880 citations; 7 studies met inclusion criteria, n = 408 patients. Six of the seven studies were deemed to have moderate risk of bias, and one was deemed to have high risk of bias. One of the studies reported test concordance, three studies reported comparative accuracy of testing strategies, and four studies reported the accuracy of a single imaging modality. Analysis from these studies revealed that fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) is more sensitive than multidetector CT for detecting osseous metastases, more sensitive than bone scintigraphy for detecting osseous metastases, and more sensitive for detecting any distant metastases. CONCLUSIONS Evidence is sparse on the use of imaging in the pretreatment staging of SCLC. There is a lack of evidence on patient-oriented outcomes and a lack of evidence on whether comparative accuracy or effectiveness is associated with patient factors. We found low-strength evidence suggesting that FDG-PET/CT is more sensitive than CT and bone scintigraphy for detecting osseous metastases.
Collapse
Affiliation(s)
- Matthew D Mitchell
- Center for Evidence-based Practice, University of Pennsylvania Health System, 3535 Market St., Suite 50, Philadelphia, PA 19104; ECRI Institute-Penn Medicine Evidence-based Practice Center, Plymouth Meeting, Pennsylvania.
| | - Charu Aggarwal
- Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amy Y Tsou
- ECRI Institute-Penn Medicine Evidence-based Practice Center, Plymouth Meeting, Pennsylvania; ECRI Institute, Plymouth Meeting, Pennsylvania
| | - Drew A Torigian
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan R Treadwell
- ECRI Institute-Penn Medicine Evidence-based Practice Center, Plymouth Meeting, Pennsylvania; ECRI Institute, Plymouth Meeting, Pennsylvania
| |
Collapse
|
29
|
Shahi J, Wright JR, Gabos Z, Swaminath A. Management of small-cell lung cancer with radiotherapy-a pan-Canadian survey of radiation oncologists. ACTA ACUST UNITED AC 2016; 23:184-95. [PMID: 27330347 DOI: 10.3747/co.23.3023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The management of small-cell lung cancer (sclc) with radiotherapy (rt) varies, with many treatment regimens having been described in the literature. We created a survey to assess patterns of practice and clinical decision-making in the management of sclc by Canadian radiation oncologists (ros). METHODS A 35-item survey was sent by e-mail to Canadian ros. The questions investigated the role of rt, the dose and timing of rt, target delineation, and use of prophylactic cranial irradiation (pci) in limited-stage (ls) and extensive-stage (es) sclc. RESULTS Responses were received from 52 eligible ros. For ls-sclc, staging (98%) and simulation or dosimetric (96%) computed tomography imaging were key determinants of rt suitability. The most common dose and fractionation schedule was 40-45 Gy in 15 once-daily fractions (40%), with elective nodal irradiation performed by 31% of ros. Preferred management of clinical T1/2aN0 sclc favoured primary chemoradiotherapy (64%). For es-sclc, consolidative thoracic rt was frequently offered (88%), with a preferred dose and fractionation schedule of 30 Gy in 10 once-daily fractions (70%). Extrathoracic consolidative rt would not be offered by 23 ros (44%). Prophylactic cranial irradiation was generally offered in ls-sclc (100%) and es-sclc (98%) after response to initial treatment. Performance status, baseline cognition, and pre-pci brain imaging were important patient factors assessed before an offer of pci. CONCLUSIONS Canadian ros show practice variation in sclc management. Future clinical trials and national treatment guidelines might reduce variability in the treatment of early-stage disease, optimization of dose and targeting in ls-sclc, and definition of suitability for pci or consolidative rt.
Collapse
Affiliation(s)
- J Shahi
- Department of Oncology, McMaster University, Hamilton, ON
| | - J R Wright
- Department of Oncology, McMaster University, Hamilton, ON;; Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, ON
| | - Z Gabos
- Department of Oncology, University of Edmonton, Edmonton, AB.; Cross Cancer Institute at Alberta Health Services, Edmonton, AB
| | - A Swaminath
- Department of Oncology, McMaster University, Hamilton, ON;; Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, ON
| |
Collapse
|
30
|
Kitajima K, Doi H, Kanda T, Yamane T, Tsujikawa T, Kaida H, Tamaki Y, Kuribayashi K. Present and future roles of FDG-PET/CT imaging in the management of lung cancer. Jpn J Radiol 2016; 34:387-399. [PMID: 27121156 DOI: 10.1007/s11604-016-0546-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
Abstract
Integrated positron emission tomography/computed tomography (PET/CT) using 2-[(18)F]fluoro-2-deoxy-D-glucose ((18)F-FDG) has emerged as a powerful tool for combined metabolic and anatomic evaluation in clinical oncologic imaging. This review discusses the utility of (18)F-FDG PET/CT as a tool for managing patients with lung cancer. We discuss different patient management stages, including diagnosis, initial staging, therapy planning, early treatment response assessment, re-staging, and prognosis.
Collapse
Affiliation(s)
- Kazuhiro Kitajima
- Division of Nuclear Medicine and PET Center, Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hiroshi Doi
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tomonori Kanda
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tomohiko Yamane
- Department of Nuclear Medicine, Saitama International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Tetsuya Tsujikawa
- Department of Biomedical Imaging Research Center, Fukui University, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Hayato Kaida
- Department of Radiology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yukihisa Tamaki
- Department of Radiation Oncology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Kozo Kuribayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
31
|
Quantification of metabolic tumor activity and burden in patients with non-small-cell lung cancer: Is manual adjustment of semiautomatic gradient-based measurements necessary? Nucl Med Commun 2016; 36:782-9. [PMID: 25888358 DOI: 10.1097/mnm.0000000000000317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Metabolic tumor burden (MTB) measurements including metabolic tumor volume and total lesion glycolysis have been shown to have prognostic value in non-small-cell lung cancer (NSCLC). The calculation of MTB typically utilizes software to semiautomatically draw volumes of interest around the tumor, which are subsequently manually adjusted by the radiologist to include the entire tumor. The manual adjustment step can be time-consuming and observer-dependent. We compared the agreement of MTB values obtained using the semiautomatic method with and without manual adjustment in NSCLC patients. METHODS This IRB-approved prospective study included 134 patients with histologically proven NSCLC who underwent fluorine-18 fluorodeoxyglucose PET/computed tomography. The MTB of the primary tumor was measured with a semiautomatic gradient-based method without manual adjustment (the semiautomatic gradient method) and with manual adjustment (the manually adjusted semiautomatic gradient method) by two radiologists using the MIM PETedge tool. The paired t-test, Wilcoxon signed-rank test, and concordance correlation coefficient (CCC) were calculated to evaluate the agreement between MTB measures obtained with these two methods, as well as agreement between the two radiologists for each method. RESULTS Maximum standardized uptake value was identical between the two methods. No statistically significant difference was present for peak standardized uptake value, metabolic tumor volume, and total lesion glycolysis values between the two methods (P=0.23, 0.45, and 0.37, respectively). Excellent agreement between the two methods was found in terms of CCC (CCC>0.98 for all measures). Interobserver reliability was excellent for all measures (CCC>0.90). CONCLUSION The semiautomatic gradient-based tumor-segmentation method can be used without the additional manual adjustment step for MTB quantification of primary NSCLC tumors.
Collapse
|
32
|
Tabrizipour AI, Shen L, Mansberg R, Chuong B. Extrapulmonary Small Cell Carcinoma of the Seminal Vesicles and Prostate Demonstrated on 18F-FDG Positron Emission Tomography/Computed Tomography. Mol Imaging Radionucl Ther 2016; 25:47-9. [PMID: 27299289 PMCID: PMC4807350 DOI: 10.4274/mirt.02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Extrapulmonary primary small cell carcinomas arising from the urogenital tract is infrequent. It can rarely arise from the prostate and even more rarely from the seminal vesicles. We present a 79-year-old male who was admitted due to acute renal failure with a history of radical radiotherapy for prostate adenocarcinoma 13 years ago. The prostate specific antigen level was not elevated. An abdominopelvic computed tomography (CT) scan showed markedly enlarged seminal vesicles causing bilateral ureteral obstruction and a mildly enlarged prostate. Further evaluation with fluorine-18-fluorodeoxyglucose (0F-FDG) positron emission tomography/CT demonstrated extensive 18F-FDG uptake in the pelvis with diffuse involvement of both seminal vesicles and the prostate without pathologic uptake in the lungs or elsewhere in the body. Core biopsies of the prostate and both seminal vesicles revealed diffuse involvement by small cell carcinoma. Therapy could not be instituted due to a rapid deterioration in the patient’s clinical condition.
Collapse
Affiliation(s)
| | | | - Robert Mansberg
- Nepean Hospital, Department of Nuclear Medicine and PET, Penrith, Australia Phone: +61247342156 E-mail:
| | | |
Collapse
|
33
|
Mandegaran R, David S, Screaton N. Cardiothoracic manifestations of neuroendocrine tumours. Br J Radiol 2016; 89:20150787. [PMID: 26781701 DOI: 10.1259/bjr.20150787] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cardiothoracic neuroendocrine tumour (NET) manifestations encompass a vast disease spectrum. Pulmonary neuroendocrine tumours represent a range of tumour grade and differentiation characteristics from pre-malignant diffuse neuroendocrine cell hyperplasia, well-differentiated, low-grade carcinoid tumours with excellent outcomes, through to high-grade small-cell lung carcinoma and large-cell neuroendocrine carcinoma with poor prognoses. Rarer thymic NETs represent a similarly wide neoplastic spectrum. Cardiac carcinoid is a paraneoplastic manifestation of the carcinoid syndrome and often the cause of mortality in NETs with hepatic metastases. Cardiothoracic NET manifestations are reviewed herein from a radiologists' perspective, discussing the diverse clinical presentations, spectrum of neoplastic and paraneoplastic manifestations, imaging features and treatment options.
Collapse
Affiliation(s)
- Ramin Mandegaran
- 1 Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sarojini David
- 2 Department of Radiology, University Hospital of Lewisham, Lewisham and Greenwich NHS Trust, London, UK
| | - Nicholas Screaton
- 3 Department of Radiology, Papworth Hospital NHS Foundation Trust, Papworth Everard Hospital, Cambridge, UK
| |
Collapse
|
34
|
The Role of 18F-FDG PET/CT on Staging and Prognosis in Patients with Small Cell Lung Cancer. Eur Radiol 2015; 26:3155-61. [PMID: 26685851 DOI: 10.1007/s00330-015-4132-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND We evaluated 18F-FDG PET/CT in small cell lung cancer (SCLC) staging and assessed metabolic (SUVmax, MTV and TLG) and morphologic (CTvol) variables as predictors for overall survival (OS) and progression-free survival (PFS). METHODS Patients with newly diagnosed, histopathology-confirmed SCLC, who underwent 18F-FDG PET/CT were evaluated. A Cox proportional hazard model was used to determine the association between the primary tumour SUVmax, MTV, TLG and CTvol with OS and PFS. Similar evaluations were performed when hilar/mediastinal lymphadenopathy was included [total SUVmax (TSUVmax), total MTV (TMTV) and total TLG (TTLG)]. RESULTS 55 patients were included. 18F-FDG PET/CT changed staging in 6/55 (10.9%) patients who were upstaged to extensive disease. TTLG (>443.8) was a significant variable for OS with HR=2.1 (CI 1.14-3.871, p=0.017). Patients with TTLG>443.8 had a median OS of 13.4 months compared to 25.7 months in patients with TTLG<443.8 (p=0.018). TMTV (>72.4) was significant for PFS with HR=2.3 (CI 1.11-4.8, p=0.025). A median PFS of 12.1 and 26.2 months was found with TMTV greater and less than 72.4, respectively (p=0.005). CONCLUSIONS 18F-FDG PET/CT improved staging of patients with SCLC, and TTLG and TMTV can be used as prognostic variables for OS and PFS, respectively. KEY POINTS • Identifying variables that predict the prognosis of patients with SCLC is important. • 18F-FDG PET/CT influences staging of patients with SCLC. • Metabolic parameters could be used as predictors for PFS and OS.
Collapse
|
35
|
Shi P, Meng X, Ni M, Sun X, Xing L, Yu J. Association between serum tumor markers and metabolic tumor volume or total lesion glycolysis in patients with recurrent small cell lung cancer. Oncol Lett 2015; 10:3123-3128. [PMID: 26722299 DOI: 10.3892/ol.2015.3673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 07/16/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the association between serum tumor markers and the metabolic tumor volume (MTV) or total lesion glycolysis (TLG), as determined by fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET/CT) in patients with recurrent small cell lung cancer (SCLC). Data from 21 patients with recurrent SCLC were collected. The levels of neuron-specific enolase (NSE), carcinoembryonic antigen (CEA) and cytokeratin 19 fragment 21-1 were measured at the time of the 18F-FDG PET/CT examination. The MTV and TLG of all lesions were calculated. Pearson correlation analyses were used to estimate the correlations between NSE level and PET findings. Pearson correlation analyses showed that NSE was the only tumor marker to have a strong correlation with MTV or TLG (r=0.787, P<0.001; r=0.866, P<0.001, respectively). In patients with a normal NSE level, no correlation was found between NSE and MTV or TLG (r=0.018, P=0.958; r=-0.003, P=0.92, respectively), but a significant correlation was found in patients with an abnormal NSE level (r=0.789, P<0.01; r=0.872, P=0.01, respectively). Therefore, TLG and MTV may serve as sensitive markers of tumor burden in patients with recurrent SCLC, with TLG showing greater sensitivity. In patients with an abnormal NSE level, a higher NSE level indicates greater MTV and TLG.
Collapse
Affiliation(s)
- Pengyue Shi
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China
| | - Mengmeng Ni
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China
| | - Xindong Sun
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
36
|
Carter BW, Glisson BS, Truong MT, Erasmus JJ. Small cell lung carcinoma: staging, imaging, and treatment considerations. Radiographics 2015; 34:1707-21. [PMID: 25310425 DOI: 10.1148/rg.346140178] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Small cell lung carcinoma (SCLC) is the most common primary pulmonary neuroendocrine malignancy and is characterized by a rapid doubling time and high growth fraction. Approximately 60%-70% of patients present with metastatic disease at the time of diagnosis, and their prognosis is poor. However, improved survival has been demonstrated when SCLC is diagnosed early and specific treatment strategies are used. A modified version of the Veterans Administration Lung Cancer Study Group (VALSG) staging system has traditionally been used to categorize SCLC as limited-stage or extensive-stage disease to guide therapy. However, the International Association for the Study of Lung Cancer has recommended that the current seventh edition of the American Joint Committee on Cancer tumor-node-metastasis staging system for lung cancer replace the VALSG system for staging of SCLC. Appropriate staging and patient management require knowledge of imaging manifestations of SCLC across multiple imaging modalities, the strengths and weaknesses of specific examinations, the correlation of these findings with the staging criteria used in clinical practice, and the impact of appropriate staging on patient treatment and survival. Computed tomography (CT) is primarily used to evaluate the primary tumor and the extent of intrathoracic disease. In recent years, however, 2-[fluorine-18]fluoro-2-deoxy-d-glucose positron emission tomography/CT has proved to be more accurate than conventional imaging in the staging of SCLC and can be used to guide therapy and assess treatment response.
Collapse
Affiliation(s)
- Brett W Carter
- From the Department of Diagnostic Radiology, Division of Diagnostic Imaging (B.W.C., M.T.T., J.J.E.), and Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine (B.S.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | | | | | | |
Collapse
|
37
|
Abstract
(18)Fluorine-2-fluoro-2-Deoxy-d-glucose ((18)F-FDG) positron emission tomography/computerized tomography (PET/CT) is a well-established functional imaging method widely used in oncology. In this article, we have incorporated the various indications for (18)FDG PET/CT in oncology based on available evidence and current guidelines. Growing body of evidence for use of (18)FDG PET/CT in select tumors is also discussed. This article attempts to give the reader an overview of the appropriateness of using (18)F-FDG PET/CT in various malignancies.
Collapse
Affiliation(s)
- Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
38
|
Diagnostic performance of bone scintigraphy and 11C-choline PET/CT in the detection of bone metastases in patients with biochemical recurrence of prostate cancer. Rev Esp Med Nucl Imagen Mol 2015. [DOI: 10.1016/j.remnie.2015.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
The Evolving Role of Molecular Imaging in Non–Small Cell Lung Cancer Radiotherapy. Semin Radiat Oncol 2015; 25:133-42. [DOI: 10.1016/j.semradonc.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Metastatic extrapulmonary small cell carcinoma to the cerebellopontine angle: a case report and review of the literature. Case Rep Oncol Med 2015; 2015:847058. [PMID: 25810937 PMCID: PMC4355812 DOI: 10.1155/2015/847058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/11/2015] [Indexed: 11/21/2022] Open
Abstract
Extrapulmonary small cell carcinomas (EPSCC) are rare malignancies with poor patient prognoses. We present the case of a 63-year-old male who underwent surgical resection of a poorly differentiated small cell carcinoma, likely from a small intestinal primary tumor that metastasized to the cerebellopontine angle (CPA). A 63-year-old male presented with mild left facial paralysis, hearing loss, and balance instability. MRI revealed a 15 mm mass in the left CPA involving the internal auditory canal consistent with a vestibular schwannoma. Preoperative MRI eight weeks later demonstrated marked enlargement to 35 mm. The patient underwent a suboccipital craniectomy and the mass was grossly different visually and in consistency from a standard vestibular schwannoma. The final pathology revealed a poorly differentiated small cell carcinoma. Postoperative PET scan identified avid uptake in the small intestine suggestive of either a small intestinal primary tumor or additional metastatic disease. The patient underwent whole brain radiation therapy and chemotherapy and at last follow-up demonstrated improvement in his symptoms. Surgical resection and radiotherapy are potential treatment options to improve survival in patients diagnosed with NET brain metastases. We present the first documented case of skull base metastasis of a poorly differentiated small cell carcinoma involving the CPA.
Collapse
|
41
|
MUHEREMU AIKEREMUJIANG, NIU XIAOHUI. Positron emission tomography/computed tomography for bone tumors (Review). Oncol Lett 2015; 9:522-526. [PMID: 25621021 PMCID: PMC4301511 DOI: 10.3892/ol.2014.2728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 08/22/2014] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate positron emission tomography (PET)/computed tomography (CT) and its applications for the diagnosis and treatment of bone tumors. The advantages and disadvantages of PET/CT were also evaluated and compared with other imaging methods and the prospects of PET/CT were discussed. The PubMed, Medline, Elsevier, Wanfang and China International Knowledge Infrastructure databases were searched for studies published between 1995 and 2013, using the terms 'PET/CT', 'positron emission tomography', 'bone tumor', 'osteosarcoma', 'giant cell bone tumor' and 'Ewing sarcoma'. All the relevant information was extracted and analyzed. A total of 73 studies were selected for the final analysis. The extracted information indicated that at present, PET/CT is the imaging method that exhibits the highest sensitivity, specificity and accuracy. Although difficulties and problems remain to be solved, PET/CT is a promising non-invasive method for the diagnostic evaluation of and clinical guidance for bone tumors.
Collapse
Affiliation(s)
- AIKEREMUJIANG MUHEREMU
- Department of Orthopedic Oncology Surgery, Beijing JiShui Tan Hospital, Beijing 100035, P.R. China
| | - XIAOHUI NIU
- Department of Orthopedic Oncology Surgery, Beijing JiShui Tan Hospital, Beijing 100035, P.R. China
| |
Collapse
|
42
|
Takenaka T, Takenoyama M, Inamasu E, Yoshida T, Toyokawa G, Nosaki K, Hirai F, Yamaguchi M, Shimokawa M, Seto T, Ichinose Y. Role of surgical resection for patients with limited disease-small cell lung cancer. Lung Cancer 2015; 88:52-6. [PMID: 25662387 DOI: 10.1016/j.lungcan.2015.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Although chemotherapy and radiotherapy are recommended for patients with limited disease small cell lung cancer (LD-SCLC), several series have reported favorable survival outcomes even in patients with stages II and III disease who underwent surgical resection. The purpose of this study is to compare the outcomes of the use of surgical resection to the other conventional non-surgical treatments in patients with LD-SCLC with respect to each clinical stage. MATERIALS AND METHODS We retrospectively reviewed 277 patients who received treatment for LD-SCLC and compared the outcomes of the use of surgical resection to the other conventional non-surgical treatments. RESULTS The clinical stage was stage I in 50 cases (18%), stage II in 53 cases (19%) and stage III in 174 cases (63%). Eighty-eight patients received surgical resection and 189 patients were treated with non-surgical treatment. Surgery was performed in 44 patients (88%) with stage I, 27 patients (52%) with stage II and 17 patients (10%) with stage III disease. The five-year survival rates of the patients according to clinical stage were 58% in stage I, 29% in stage II and 18% in stage III. The five-year survival rates of the patients with and without surgical resection according to clinical stage were as follows: 62% and 25% in stage I (p<0.01), 33% and 24% in stage II (p=0.95), 18% and 18% in stage III (p=0.35), respectively. In 44 propensity score-matched pairs with stages II and III disease, including matching for variables such as age, gender and the PS, the five-year survival rates was better in patients with surgical resection than in those without surgery (p=0.04). CONCLUSION Surgical resection is effective for the patients with stage I LD-SCLC and some cases of stage II or III disease.
Collapse
Affiliation(s)
- Tomoyoshi Takenaka
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan.
| | | | - Eiko Inamasu
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Tsukihisa Yoshida
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Kaname Nosaki
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Fumihiko Hirai
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Masafumi Yamaguchi
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | | | - Takashi Seto
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Yukito Ichinose
- Clinical Research Institute, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
43
|
Garcia JR, Moreno C, Valls E, Cozar P, Bassa P, Soler M, Alvarez-Moro FJ, Moragas M, Riera E. [Diagnostic performance of bone scintigraphy and (11)C-Choline PET/CT in the detection of bone metastases in patients with biochemical recurrence of prostate cancer]. Rev Esp Med Nucl Imagen Mol 2014; 34:155-61. [PMID: 25443648 DOI: 10.1016/j.remn.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/11/2014] [Accepted: 08/16/2014] [Indexed: 10/24/2022]
Abstract
AIM To compare bone scan (BS) with (11)C-Choline PET/CT for the detection of bone metastases in patients with biochemical recurrence of prostate cancer (PC). MATERIAL AND METHODS A total of 169 patients with biochemical recurrence of PC(PSA:2.4-58 ng/ml) who were referred for both exams (0-15 days-in-between) were included. Lesion-detection-rate per patients and lesions were analyzed for both BS and (11)C-Choline PET/CT. Metastasis diagnosis was reached by: biopsy, CT/(18)F-Fluoride PET/MRI confirmation, or evidence of progression in subsequent imaging procedures. RESULTS A total of 91 lesions were found to be active in BS and/or (11)C-choline PET/CT (40 patients), with 78 of which were metastatic. BS detected 38 blastic, 2 lytic and 10 non-CT-evident lesions. (11)C-Choline PET/CT detected 41 blastic, 4 lytic and 29 non-CT-evident lesions. BS and (11)C-Choline PET/CT sensitivities were 65.4% and 96.1%; specificities ere 38.5 and 92.3% (χ(2) 8.27, p<0.04). Both imaging techniques were negative in 118 patients. Tracer avid lesions were found in 51 patients: with 30/51 being BS and (11)C-Choline PET/CT concordant; in 21/51 patients had discordant lesions (kappa 0.712, p=0.00). Lesions were absolutely discordant in 10/19 patients,: 5 FN BS, 2 FP BS (degenerative changes; dysplasia), 1 FN (11)C-Choline PET/CT (blastic), 1 FP (11)C-Choline PET/CT (degenerative), 1 out of field-of-view lesion with (11)C-Choline PET/CT (tibia alone). (11)C-Choline PET/CT showed extraosseous involvement in 26/51 patients with bone metastases: 9 local recurrences, 5 infra-diaphragmatic-lymph-nodes, 2 supra-diaphragmatic, 5 local and infra-diaphragmatic, 4 infra- and supra-diaphragmatic, 1 supra-diaphragmatic and lung metastases. CONCLUSION (11)C-Choline PET/CT yielded better sensitivity and specificity than BS for the detection of bone involvement in patients with biochemical recurrence of PC and allowed extraosseous restaging, with an impact in the clinical management of these patients.
Collapse
Affiliation(s)
- J R Garcia
- Unidad PET CETIR-ERESA, Esplugues, Barcelona, España.
| | - C Moreno
- Unidad PET CETIR-ERESA, Esplugues, Barcelona, España
| | - E Valls
- Unidad PET CETIR-ERESA, Esplugues, Barcelona, España
| | - P Cozar
- Unidad PET CETIR-ERESA, Esplugues, Barcelona, España
| | - P Bassa
- Unidad PET CETIR-ERESA, Esplugues, Barcelona, España
| | - M Soler
- Unidad PET CETIR-ERESA, Esplugues, Barcelona, España
| | | | - M Moragas
- Unidad PET CETIR-ERESA, Esplugues, Barcelona, España
| | - E Riera
- Unidad PET CETIR-ERESA, Esplugues, Barcelona, España
| |
Collapse
|
44
|
|
45
|
Ravenel JG, Rosenzweig KE, Kirsch J, Ginsburg ME, Kanne JP, Kestin LL, Parker JA, Rimner A, Saleh AG, Mohammed TLH. ACR Appropriateness Criteria Non-invasive Clinical Staging of Bronchogenic Carcinoma. J Am Coll Radiol 2014; 11:849-56. [DOI: 10.1016/j.jacr.2014.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022]
|
46
|
Crippa S, Salgarello M, Laiti S, Partelli S, Castelli P, Spinelli AE, Tamburrino D, Zamboni G, Falconi M. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer. Dig Liver Dis 2014; 46:744-9. [PMID: 24721105 DOI: 10.1016/j.dld.2014.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/03/2014] [Accepted: 03/16/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. METHODS (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. RESULTS Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). CONCLUSIONS The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting.
Collapse
Affiliation(s)
- Stefano Crippa
- Division of Pancreatic Surgery, Department of Surgery, Università Politecnica delle Marche, Ospedali Riuniti, Ancona, Italy
| | | | - Silvia Laiti
- Residency Programme in Surgery, University of Verona, Italy
| | - Stefano Partelli
- Division of Pancreatic Surgery, Department of Surgery, Università Politecnica delle Marche, Ospedali Riuniti, Ancona, Italy
| | - Paola Castelli
- Department of Pathology, Ospedale Sacro Cuore-Don Calabria, Negrar, Italy
| | - Antonello E Spinelli
- Department of Medical Physics and Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giuseppe Zamboni
- Department of Pathology, Ospedale Sacro Cuore-Don Calabria, Negrar, Italy
| | - Massimo Falconi
- Division of Pancreatic Surgery, Department of Surgery, Università Politecnica delle Marche, Ospedali Riuniti, Ancona, Italy.
| |
Collapse
|
47
|
Obara P, Pu Y. Prognostic value of metabolic tumor burden in lung cancer. Chin J Cancer Res 2014; 25:615-22. [PMID: 24385688 DOI: 10.3978/j.issn.1000-9604.2013.11.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022] Open
Abstract
Accurate prognosis in patients with lung cancer is important for clinical decision making and treatment selection. The TNM staging system is currently the main method for establishing prognosis. Using this system, patients are grouped into one of four stages based on primary tumor extent, nodal disease, and distant metastases. However, each stage represents a range of disease extent and may not on its own be the best reflection of individual patient prognosis. (18)F-fluorodeoxyglucose-positron emission tomography ((18)F-FDG-PET) can be used to evaluate the metabolic tumor burden affecting the whole body with measures such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG). MTV and TLG have been shown to be significant prognostic factors in patients with lung cancer, independent of TNM stage. These metabolic tumor burden measures have the potential to make lung cancer staging and prognostication more accurate and quantitative, with the goal of optimizing treatment choices and outcome predictions.
Collapse
Affiliation(s)
- Piotr Obara
- Department of Radiology, University of Chicago, Chicago 60637, USA
| | - Yonglin Pu
- Department of Radiology, University of Chicago, Chicago 60637, USA
| |
Collapse
|
48
|
Sahiner I, Vural GU. Positron emission tomography/computerized tomography in lung cancer. Quant Imaging Med Surg 2014; 4:195-206. [PMID: 24914421 DOI: 10.3978/j.issn.2223-4292.2014.03.05] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/14/2014] [Indexed: 12/25/2022]
Abstract
Positron emission tomography (PET) using 2-(18F)-flouro-2-deoxy-D-glucose (FDG) has emerged as a useful tool in the clinical work-up of lung cancer. This review article provides an overview of applications of PET in diagnosis, staging, treatment response evaluation, radiotherapy planning, recurrence assessment and prognostication of lung cancer.
Collapse
Affiliation(s)
- Ilgin Sahiner
- Ankara Oncology Research and Training Hospital, Turkey
| | | |
Collapse
|
49
|
Is there any significance of lung cancer histology to compare the diagnostic accuracies of (18)F-FDG-PET/CT and (99m)Tc-MDP BS for the detection of bone metastases in advanced NSCLC? Contemp Oncol (Pozn) 2014; 18:106-10. [PMID: 24966793 PMCID: PMC4068819 DOI: 10.5114/wo.2014.42725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/06/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022] Open
Abstract
Aim of the study Bone scintigraphy (BS) and fluorine-18 deoxyglucose positron emission tomography computed tomography (18F-FDG-PET/CT) are widely used for the detection of bone involvement. The optimal imaging modality for the detection of bone metastases in histological subgroups of non-small cell lung cancer (NSCLC) remains ambiguous. The aim of this study was to compare the efficacy of 18F-FDG-PET/C and 99mTc-methylene diphosphonate (99mTc-MDP) BS in the detection of bone metastases of patients in NSCLC. Specifically, we compared the diagnostic accuracies of these imaging techniques evaluating bone metastasis in histological subgroups of NSCLC. Material and methods Fifty-three patients with advanced NSCLC, who had undergone both 18F-FDG-PET/CT and BS and were eventually diagnosed as having bone metastasis, were enrolled in this retrospective study. Results The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 18F-FDG-PET/CT and BS were 90.4%, 99.4%, 98.1%, 96.6%, 97.0% and 84.6%, 93.1%, 82.5%, 93.2, 90.8%, respectively. The κ statistics were calculated for 18F-FDG-PET/CT and BS. The κ-value was 0.67 between 18F-FDG-PET/CT and BS in all patients. On the other hand, the κ-value was 0.65 in adenocarcinoma, and 0.61 in squamous cell carcinoma between 18F-FDG-PET/CT and BS. The κ-values suggested excellent agreement between all patients and histological subgroups of NSCLC. Conclusions 18F-FDG-PET/CT was more favorable than BS in the screening of metastatic bone lesions, but the trend did not reach statistical significance in all patients and histological subgroups of NSCLC. Our results need to be validated in prospective and larger study clinical trials to further clarify this topic.
Collapse
|
50
|
Abstract
Extrapulmonary small cell carcinoma (SCC) is an uncommon malignancy. A 57-year-old man was referred because of a 1-month history of left lumbago. MR images showed an ovoid tumor in the left adrenal gland. FDG PET/CT showed intense FDG uptake of the left adrenal tumor with thrombosis of the left renal vein. The patient underwent left adrenalectomy and nephrectomy. Histopathology revealed typical adrenal SCC with neoplastic thrombosis of the left renal vein. This case suggests that FDG PET/CT is useful for staging of extrapulmonary SCC.
Collapse
|