1
|
Schmulenson E, Bovet C, Theurillat R, Decosterd LA, Largiadèr CR, Prost JC, Csajka C, Bärtschi D, Guckenberger M, von Moos R, Bastian S, Joerger M, Jaehde U. Population pharmacokinetic analyses of regorafenib and capecitabine in patients with locally advanced rectal cancer (SAKK 41/16 RECAP). Br J Clin Pharmacol 2022; 88:5336-5347. [PMID: 35831229 DOI: 10.1111/bcp.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Locally advanced rectal cancer (LARC) is an area of unmet medical need with one third of patients dying from their disease. With response to neoadjuvant chemo-radiotherapy being a major prognostic factor, trial SAKK 41/16 assessed potential benefits of adding regorafenib to capecitabine-amplified neoadjuvant radiotherapy in LARC patients. METHODS Patients received regorafenib at three dose levels (40/80/120 mg once daily) combined with capecitabine 825 mg/m2 bidaily and local radiotherapy. We developed population pharmacokinetic models from plasma concentrations of capecitabine and its metabolites 5'-deoxy-5-fluorocytidine and 5'-deoxy-5-fluorouridine as well as regorafenib and its metabolites M-2 and M-5 as implemented into SAKK 41/16 to assess potential drug-drug interactions (DDI). After establishing parent-metabolite base models, drug exposure parameters were tested as covariates within the respective models to investigate for potential DDI. Simulation analyses were conducted to quantify their impact. RESULTS Plasma concentrations of capecitabine, regorafenib and metabolites were characterized by one- and two compartment models and absorption was described by parallel first- and zero-order processes and transit compartments, respectively. Apparent capecitabine clearance was 286 L/h (relative standard error [RSE] 14.9%, interindividual variability [IIV] 40.1%) and was reduced by regorafenib cumulative area under the plasma-concentration curve (median reduction of 45.6%) as exponential covariate (estimate -4.10×10-4 , RSE 17.8%). Apparent regorafenib clearance was 1.94 L/h (RSE 12.1%, IIV 38.1%). Simulation analyses revealed significantly negative associations between capecitabine clearance and regorafenib exposure. CONCLUSIONS This work informs the clinical development of regorafenib and capecitabine combination treatment and underlines the importance to study potential DDI with new anticancer drug combinations.
Collapse
Affiliation(s)
- Eduard Schmulenson
- Institute of Pharmacy, Department of Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Cédric Bovet
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Regula Theurillat
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Laurent Arthur Decosterd
- Laboratory of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jean-Christophe Prost
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Chantal Csajka
- Clinical Pharmaceutical Sciences, Lausanne University, Lausanne, Switzerland
| | | | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Ulrich Jaehde
- Institute of Pharmacy, Department of Clinical Pharmacy, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Hove VN, Anderson K, Hayden ER, Pasquariello KZ, Gibson AA, Shen S, Qu J, Jin Y, Miecznikowski JC, Hu S, Sprowl JA. Influence of Tyrosine Kinase Inhibition on Organic Anion Transporting Polypeptide 1B3-Mediated Uptake. Mol Pharmacol 2022; 101:381-389. [PMID: 35383108 PMCID: PMC9354029 DOI: 10.1124/molpharm.121.000287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
The organic anion transporting polypeptide family member (OATP) 1B3 is a hepatic uptake transporter that has a broad substrate recognition and plays a significant role in regulating elimination of endogenous biomolecules or xenobiotics. OATP1B3 works in tandem with OATP1B1, with which it shares approximately 80% sequence homology and a high degree of substrate overlap. Despite some substrates being recognized solely by OATP1B3, its ability to compensate for loss of OATP1B1-mediated elimination and recognition by regulatory agencies, little is known about OATP1B3 regulatory factors and how they are involved with drug-drug interaction. It was recently discovered that OATP1B1 function is mediated by the activity of a particular tyrosine kinase that is sensitive to a variety of tyrosine kinase inhibitors (TKIs). This study reports that OATP1B3 is similarly regulated, as at least 50% of its activity is reduced by 20 US Food and Drug Administration -approved TKIs. Nilotinib was assessed as the most potent OATP1B3 inhibitor among the investigated TKIs, which can occur at clinically relevant concentrations and acted predominantly through noncompetitive inhibition without impacting membrane expression. Finally, OATP1B3 function was determined to be sensitive to the knockdown of the Lck/Yes novel tyrosine kinase that is sensitive to nilotinib and has been previously implicated in mediating OATP1B1 activity. Collectively, our findings identify tyrosine kinase activity as a major regulator of OATP1B3 function which is sensitive to kinase inhibition. Given that OATP1B1 is similarly regulated, simultaneous disruption of these transporters can have drastic effects on systemic drug concentrations, which would promote adverse events. SIGNIFICANCE STATEMENT: The organic anion transporting polypeptide family member (OATP) 1B3 is a facilitator of hepatic drug elimination, although much is unknown of how OATP1B3 activity is mediated, or how such regulators contribute to drug-drug interactions. This study reports that OATP1B3 activity is dependent on the Lck/Yes novel tyrosine kinase, which is sensitive to numerous tyrosine kinase inhibitors. These findings provide insight into the occurrence of many clinical drug-drug interactions, and a rationale for future study of tyrosine kinases regulating drug disposition.
Collapse
Affiliation(s)
- Vusumuzi N Hove
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Kenneth Anderson
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Elizabeth R Hayden
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Kyle Z Pasquariello
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Alice A Gibson
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Yan Jin
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Jeffrey C Miecznikowski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Shuiying Hu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.N.H., K.A., E.R.H., K.Z.P., S.S., J.Q., J.A.S.) and Department of Biostatistics (J.C.M.), University at Buffalo, State University of New York, Buffalo, New York and Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (A.A.G., Y.J., S.H.)
| |
Collapse
|
3
|
Hayden ER, Chen M, Pasquariello KZ, Gibson AA, Petti JJ, Shen S, Qu J, Ong SS, Chen T, Jin Y, Uddin ME, Huang KM, Paz A, Sparreboom A, Hu S, Sprowl JA. Regulation of OATP1B1 Function by Tyrosine Kinase-mediated Phosphorylation. Clin Cancer Res 2021; 27:4301-4310. [PMID: 33664059 DOI: 10.1158/1078-0432.ccr-21-0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OATP1B1 (SLCO1B1) is the most abundant and pharmacologically relevant uptake transporter in the liver and a key mediator of xenobiotic clearance. However, the regulatory mechanisms that determine OATP1B1 activity remain uncertain, and as a result, unexpected drug-drug interactions involving OATP1B1 substrates continue to be reported, including several involving tyrosine kinase inhibitors (TKI). EXPERIMENTAL DESIGN OATP1B1-mediated activity in overexpressing HEK293 cells and hepatocytes was assessed in the presence of FDA-approved TKIs, while rosuvastatin pharmacokinetics in the presence of an OATP1B1 inhibiting TKI were measured in vivo. Tyrosine phosphorylation of OATP1B1 was determined by LC/MS-MS-based proteomics and transport function was measured following exposure to siRNAs targeting 779 different kinases. RESULTS Twenty-nine of 46 FDA-approved TKIs studied significantly inhibit OATP1B1 function. Inhibition of OATP1B1 by TKIs, such as nilotinib, is predominantly noncompetitive, can increase systemic concentrations of rosuvastatin in vivo, and is associated with reduced phosphorylation of OATP1B1 at tyrosine residue 645. Using genetic screens and functional validation studies, the Src kinase LYN was identified as a potential regulator of OATP1B1 activity that is highly sensitive to inhibition by various TKIs at clinically relevant concentrations. CONCLUSIONS A novel kinase-dependent posttranslational mechanism of OATP1B1 activation was identified and interference with this process by TKIs can influence the elimination of a broad range of xenobiotic substrates.
Collapse
Affiliation(s)
- Elizabeth R Hayden
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kyle Z Pasquariello
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Alice A Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - James J Petti
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Su Sien Ong
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Aviv Paz
- Hauptman-Woodward Medical Research Institute, Buffalo, New York
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York.
| |
Collapse
|