1
|
Hossain MT, Hossain MA. Targeting PI3K in cancer treatment: A comprehensive review with insights from clinical outcomes. Eur J Pharmacol 2025; 996:177432. [PMID: 40020984 DOI: 10.1016/j.ejphar.2025.177432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway plays a crucial role in cancer, including cell growth, survival, metabolism, and metastasis. Its major role in tumor growth makes it a key target for cancer therapeutics, offering significant potential to slow tumor progression and enhance patient outcomes. Gain-of-function mutations, gene amplifications, and the loss of regulatory proteins like PTEN are frequently observed in malignancies, contributing to tumor development and resistance to conventional treatments such as chemotherapy and hormone therapy. As a result, PI3K inhibitors have received a lot of interest in cancer research. Several kinds of small-molecule PI3K inhibitors have been developed, including pan-PI3K inhibitors, isoform-specific inhibitors, and dual PI3K/mTOR inhibitors, each targeting a distinct component of the pathway. Some PI3K inhibitors such as idelalisib, copanlisib, duvelisib, alpelisib, and umbralisib have received FDA-approval, and are effective in the treatment of breast cancer and hematologic malignancies. Despite promising results in preclinical and clinical trials, the overall clinical success of PI3K inhibitors has been mixed. While some patients may get substantial advantages, a considerable number of them acquire resistance as a result of feedback activation of alternative pathways, adaptive tumor responses, and treatment-emergent mutations. The resistance mechanisms provide barriers to the sustained efficacy of PI3K-targeted treatments. This study reviews recent advancements in PI3K inhibitors, covering their clinical status, mechanism of action, resistance mechanisms, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Md Takdir Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Shan KS, Bonano-Rios A, Theik NWY, Hussein A, Blaya M. Molecular Targeting of the Phosphoinositide-3-Protein Kinase (PI3K) Pathway across Various Cancers. Int J Mol Sci 2024; 25:1973. [PMID: 38396649 PMCID: PMC10888452 DOI: 10.3390/ijms25041973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of the phosphatidylinositol-3-kinase (PI3K) pathway can lead to uncontrolled cellular growth and tumorigenesis. Targeting PI3K and its downstream substrates has been shown to be effective in preclinical studies and phase III trials with the approval of several PI3K pathway inhibitors by the Food and Drug Administration (FDA) over the past decade. However, the limited clinical efficacy of these inhibitors, intolerable toxicities, and acquired resistances limit the clinical application of PI3K inhibitors. This review discusses the PI3K signaling pathway, alterations in the PI3K pathway causing carcinogenesis, current and novel PI3K pathway inhibitors, adverse effects, resistance mechanisms, challenging issues, and future directions of PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Khine S. Shan
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Amalia Bonano-Rios
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Nyein Wint Yee Theik
- Division of Internal Medicine, Memorial Health Care, Pembroke Pines, FL 33028, USA;
| | - Atif Hussein
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Marcelo Blaya
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| |
Collapse
|
3
|
DA Costa Machado AK, Machado CB, DE Pinho Pessoa FMC, Barreto IV, Gadelha RB, DE Sousa Oliveira D, Ribeiro RM, Lopes GS, DE Moraesfilho MO, DE Moraes MEA, Khayat AS, Moreira-Nunes CA. Development and Clinical Applications of PI3K/AKT/mTOR Pathway Inhibitors as a Therapeutic Option for Leukemias. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:9-24. [PMID: 38173664 PMCID: PMC10758851 DOI: 10.21873/cdp.10279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Leukemias are hematological neoplasms characterized by dysregulations in several cellular signaling pathways, prominently including the PI3K/AKT/mTOR pathway. Since this pathway is associated with several important cellular mechanisms, such as proliferation, metabolism, survival, and cell death, its hyperactivation significantly contributes to the development of leukemias. In addition, it is a crucial prognostic factor, often correlated with therapeutic resistance. Changes in the PI3K/AKT/mTOR pathway are identified in more than 50% of cases of acute leukemia, especially in myeloid lineages. Furthermore, these changes are highly frequent in cases of chronic lymphocytic leukemia, especially those with a B cell phenotype, due to the correlation between the hyperactivation of B cell receptors and the abnormal activation of PI3Kδ. Thus, the search for new therapies that inhibit the activity of the PI3K/AKT/mTOR pathway has become the objective of several clinical studies that aim to replace conventional oncological treatments that have high rates of toxicities and low specificity with target-specific therapies offering improved patient quality of life. In this review we describe the PI3K/AKT/mTOR signal transduction pathway and its implications in leukemogenesis. Furthermore, we provide an overview of clinical trials that employed PI3K/AKT/mTOR inhibitors either as monotherapy or in combination with other cytotoxic agents for treating patients with various types of leukemias. The varying degrees of treatment efficacy are also reported.
Collapse
Affiliation(s)
- Anna Karolyna DA Costa Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Flávia Melo Cunha DE Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renan Brito Gadelha
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | - Manoel Odorico DE Moraesfilho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral DE Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
- Clementino Fraga Group, Central Unity, Molecular Biology Laboratory, Fortaleza, CE, Brazil
| |
Collapse
|
4
|
Chohan KL, Ansell SM. SOHO State of the Art Updates and Next Questions | From Biology to Therapy: Progress in Hodgkin Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:705-713. [PMID: 37344332 DOI: 10.1016/j.clml.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
Classic Hodgkin lymphoma (HL) is a unique lymphoid malignancy where the malignant cells comprise only 1% to 2% of the total tumor cellularity. Over the past 2 decades, the treatment of HL has evolved drastically based on the advent of novel targeted therapies. Novel agents including programmed death-1 (PD-1) inhibitors, antibody-drug conjugates such as brentuximab vedotin, bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapies have served to shape the management of HL in the frontline as well as the relapsed and refractory (R/R) setting. Some of these agents have been incorporated into treatment algorithms, while others are currently under investigation demonstrating promising results. This review focuses on highlighting the underlying tumor biology forming the basis of therapeutics in HL, and reviews some of the emerging and established novel therapies.
Collapse
|
5
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 611] [Impact Index Per Article: 305.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
6
|
Li Z, Mu W, Xiao M. Genetic lesions and targeted therapy in Hodgkin lymphoma. Ther Adv Hematol 2023; 14:20406207221149245. [PMID: 36654739 PMCID: PMC9841868 DOI: 10.1177/20406207221149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Hodgkin lymphoma is a special type of lymphoma in which tumor cells frequently undergo multiple genetic lesions that are associated with accompanying pathway abnormalities. These pathway abnormalities are dominated by active signaling pathways, such as the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the NFκB (nuclear factor kappa-B) pathway, which usually result in hyperactive survival signaling. Targeted therapies often play an important role in hematologic malignancies, such as CAR-T therapy (chimeric antigen receptor T-cell immunotherapy) targeting CD19 and CD22 in diffuse large B-cell lymphoma, while in Hodgkin lymphoma, the main targets of targeted therapies are CD30 molecules and PD1 molecules. Drugs targeting other molecules are also under investigation. This review summarizes the actionable genetic lesions, current treatment options, clinical trials for Hodgkin lymphoma and the potential value of those genetic lesions in clinical applications.
Collapse
Affiliation(s)
- Zhe Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hankou, Wuhan 430030, China
| |
Collapse
|
7
|
De Re V, Repetto O, Mussolin L, Brisotto G, Elia C, Lopci E, d’Amore ESG, Burnelli R, Mascarin M. Promising drugs and treatment options for pediatric and adolescent patients with Hodgkin lymphoma. Front Cell Dev Biol 2022; 10:965803. [PMID: 36506094 PMCID: PMC9729954 DOI: 10.3389/fcell.2022.965803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Currently-available therapies for newly-diagnosed pediatric and adolescent patients with Hodgkin lymphoma result in >95% survival at 5 years. Long-term survivors may suffer from long-term treatment-related side effects, however, so the past 20 years have seen clinical trials for children and adolescents with HL gradually abandon the regimens used in adults in an effort to improve this situation. Narrower-field radiotherapy can reduce long-term toxicity while maintaining good tumor control. Various risk-adapted chemo-radiotherapy strategies have been used. Early assessment of tumor response with interim positron emission tomography and/or measuring metabolic tumor volume has been used both to limit RT in patients with favorable characteristics and to adopt more aggressive therapies in patients with a poor response. Most classical Hodgkin's lymphoma relapses occur within 3 years of initial treatment, while relapses occurring 5 years or more after diagnosis are rare. As the outcome for patients with relapsed/refractory classical Hodgkin lymphoma remains unsatisfactory, new drugs have been proposed for its prevention or treatment. This review summarizes the important advances made in recent years in the management of pediatric and adolescent with classical Hodgkin lymphoma, and the novel targeted treatments for relapsed and refractory classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Valli De Re
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy,*Correspondence: Valli De Re, ; Maurizio Mascarin,
| | - Ombretta Repetto
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy
| | - Lara Mussolin
- Pediatric Hemato-Oncology Unit, Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Giulia Brisotto
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy
| | - Caterina Elia
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico IRCCS, Aviano, Italy
| | - Egesta Lopci
- Nuclear Medicine, IRCCS—Humanitas Research Hospital, Rozzano, MI, Italy
| | | | - Roberta Burnelli
- Pediatric Hematology-Oncology Unit, Azienda Ospedaliera Universitaria, Ospedale Sant’Anna, Ferrara, Italy
| | - Maurizio Mascarin
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico IRCCS, Aviano, Italy,*Correspondence: Valli De Re, ; Maurizio Mascarin,
| |
Collapse
|
8
|
Verzella D, Cornice J, Arboretto P, Vecchiotti D, Di Vito Nolfi M, Capece D, Zazzeroni F, Franzoso G. The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. Biomedicines 2022; 10:2233. [PMID: 36140335 PMCID: PMC9496094 DOI: 10.3390/biomedicines10092233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
9
|
Major A, Kline J, Karrison TG, Fishkin PAS, Kimball AS, Petrich AM, Nattam S, Rao K, Sleckman BG, Cohen K, Besien KV, Rapoport AP, Smith SM. Phase I/II clinical trial of temsirolimus and lenalidomide in patients with relapsed and refractory lymphomas. Haematologica 2022; 107:1608-1618. [PMID: 34320785 PMCID: PMC9244831 DOI: 10.3324/haematol.2021.278853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
The PI3K/Akt/mTOR (PAM) axis is constitutively activated in multiple lymphoma subtypes and is a promising therapeutic target. The mTOR inhibitor temsirolimus (TEM) and the immunomodulatory agent lenalidomide (LEN) have overlapping effects within the PAM axis with synergistic potential. This multicenter phase I/II study evaluated combination therapy with TEM/LEN in patients with relapsed and refractory lymphomas. Primary endpoints of the phase II study were rates of complete (CR) and overall response (ORR). There were 18 patients in the phase I dose-finding study, and TEM 25 mg weekly and LEN 20 mg on day 1 through day 21 every 28 days was established as the recommended phase II dose. An additional 93 patients were enrolled in the phase II component with three cohorts: diffuse large B-cell lymphoma (DLBCL, n=39), follicular lymphoma (FL, n=15), and an exploratory cohort of other lymphoma histologies with classical Hodgkin lymphoma (cHL) comprising the majority (n=39 total, n=20 with cHL). Patients were heavily pretreated with a median of four (range, 1-14) prior therapies and one-third with relapse following autologous stem cell transplantation (ASCT); patients with cHL had a median of six prior therapies. The FL cohort was closed prematurely due to slow accrual. ORR were 26% (13% CR) and 64% (18% CR) for the DLBCL and exploratory cohorts, respectively. ORR for cHL patients in the exploratory cohort, most of whom had relapsed after both brentuximab vedotin and ASCT, was 80% (35% CR). Eight cHL patients (40%) proceeded to allogeneic transplantation after TEM/LEN therapy. Grade ≥3 hematologic adverse events (AE) were common. Three grade 5 AE occurred. Combination therapy with TEM/LEN was feasible and demonstrated encouraging activity in heavily-pretreated lymphomas, particularly in relapsed/refractory cHL (clinicaltrials gov. Identifier: NCT01076543).
Collapse
Affiliation(s)
| | | | | | | | - Amy S Kimball
- University of Maryland School of Medicine and Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; Amgen Inc., Thousand Oaks, CA
| | - Adam M Petrich
- Northwestern University, Chicago, IL, USA; Daiichi-Sankyo, Basking Ridge, NJ
| | | | - Krishna Rao
- Southern Illinois University, Springfield, IL
| | | | | | | | - Aaron P Rapoport
- University of Maryland School of Medicine and Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | | |
Collapse
|
10
|
Epperla N, Hamadani M. Double-refractory Hodgkin lymphoma: tackling relapse after brentuximab vedotin and checkpoint inhibitors. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:247-253. [PMID: 34889401 PMCID: PMC8791097 DOI: 10.1182/hematology.2021000256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The approval of brentuximab vedotin (BV) and checkpoint inhibitors (CPI) has revolutionized the management of relapsed/refractory classical Hodgkin lymphoma (cHL) patients. In recent years these agents have rapidly moved to earlier lines of therapy, including post-autologous hematopoietic cell transplant (auto-HCT) consolidation, pre-HCT salvage, and the frontline treatment setting. This shift in practice means that double-refractory (refractory to both BV and CPI) cHL is becoming an increasingly common clinical problem. In patients who are not eligible for clinical trials, conventional cytotoxic and targeted therapies (off label) may be a potential option. In patients who are transplant eligible, early referral to allogeneic HCT should be considered given the significant improvement in transplant outcomes in the contemporary era. Cellular therapy options including CD30.chimeric antigen receptor T cells, Epstein-Barr virus-directed cytotoxic T cells, and CD16A/30 bispecific natural killer cell engagers appear promising and are currently in clinical trials.
Collapse
Affiliation(s)
- Narendranath Epperla
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH
| | - Mehdi Hamadani
- Blood and Marrow Transplant Program and Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
11
|
Revisiting IL-6 expression in the tumor microenvironment of classical Hodgkin lymphoma. Blood Adv 2021; 5:1671-1681. [PMID: 33720338 DOI: 10.1182/bloodadvances.2020003664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
Interleukin-6 (IL-6) can induce therapeutic resistance for several cancer agents currently used to treat classical Hodgkin lymphoma (cHL). We aimed to investigate whether the presence of IL-6+ leukocytes and IL-6+ Hodgkin-Reed-Sternberg (HRS) cells in the tumor microenvironment (TME) was associated with adverse survival outcomes, expression of other immune markers, and serum IL-6 levels. We used a contemporarily treated cohort (n = 136), with a median follow-up of 13.8 years (range, 0.59-15.9 years). We performed immunohistochemistry with an IL-6 antibody on tissue microarrays from diagnostic biopsies of cHL patients. Patients with IL-6+ leukocytes ≥1% (n = 54 of 136) had inferior event-free survival (hazard ratio [HR] = 3.58; 95% confidence interval [CI], 1.80-7.15) and overall survival (HR = 6.71; 95% CI, 2.51-17.99). The adverse survival was maintained in multivariate Cox regression and propensity score-matched analyses, adjusting for well-known poor-prognostic covariates. The presence of IL-6+ HRS cells and high serum IL-6 levels were not associated with survival. IL-6+ leukocytes correlated with increased proportions of IL-6+ HRS cells (P < .01), CD138+ plasma cells (P < .01), CD68+ macrophages (P = .02), and tryptase-positive mast cells (P < .01). IL-6+ HRS cells correlated with increased proportions of CD68+ macrophages (P = .03), programmed death-ligand 1-positive (PD-L1+) leukocytes (P = .04), and PD-L1+ HRS cells (P < .01). Serum-IL-6 lacked correlation with IL-6 expression in the TME. This is the first study highlighting the adverse prognostic impact of IL-6+ leukocytes in the TME in a cohort of contemporarily treated adult patients with cHL.
Collapse
|
12
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
13
|
Cardiovascular toxicity of PI3Kα inhibitors. Clin Sci (Lond) 2021; 134:2595-2622. [PMID: 33063821 DOI: 10.1042/cs20200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are a family of intracellular lipid kinases that phosphorylate the 3'-hydroxyl group of inositol membrane lipids, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. This results in downstream effects, including cell growth, proliferation, and migration. The heart expresses three PI3K class I enzyme isoforms (α, β, and γ), and these enzymes play a role in cardiac cellular survival, myocardial hypertrophy, myocardial contractility, excitation, and mechanotransduction. The PI3K pathway is associated with various disease processes but is particularly important to human cancers since many gain-of-function mutations in this pathway occur in various cancers. Despite the development, testing, and regulatory approval of PI3K inhibitors in recent years, there are still significant challenges when creating and utilizing these drugs, including concerns of adverse effects on the heart. There is a growing body of evidence from preclinical studies revealing that PI3Ks play a crucial cardioprotective role, and thus inhibition of this pathway could lead to cardiac dysfunction, electrical remodeling, vascular damage, and ultimately, cardiovascular disease. This review will focus on PI3Kα, including the mechanisms underlying the adverse cardiovascular effects resulting from PI3Kα inhibition and the potential clinical implications of treating patients with these drugs, such as increased arrhythmia burden, biventricular cardiac dysfunction, and impaired recovery from cardiotoxicity. Recommendations for future directions for preclinical and clinical work are made, highlighting the possible role of PI3Kα inhibition in the progression of cancer-related cachexia and female sex and pre-existing comorbidities as independent risk factors for cardiac abnormalities after cancer treatment.
Collapse
|
14
|
Hanlon A, Brander DM. Managing toxicities of phosphatidylinositol-3-kinase (PI3K) inhibitors. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:346-356. [PMID: 33275709 PMCID: PMC7727518 DOI: 10.1182/hematology.2020000119] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite the proven effective approach to targeting the phosphatidylinositol-3-kinase (PI3K) pathway in B-cell malignancies, the approved PI3K inhibitors idelalisib and duvelisib have been less commonly selected for patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), given the availability of other more tolerable agents. However, patients with CLL/SLL can experience a disease course that is multiply relapsed, refractory, or intolerant to treatment, and PI3K inhibitors can achieve meaningful responses. This article reviews the common early- and late-onset (considered immune-mediated) toxicities with PI3K inhibitors, including infections, hepatotoxicity, diarrhea and/or colitis, and pneumonitis. Data on pretreatment considerations, toxicity management, and drug rechallenge are presented. In addition, next-generation PI3K inhibitors and novel treatment approaches with PI3K inhibitors, including combinations, time-limited treatments, and intermittent dosing, are highlighted.
Collapse
|
15
|
Zhabyeyev P, Chen X, Vanhaesebroeck B, Oudit GY. PI3Kα in cardioprotection: Cytoskeleton, late Na + current, and mechanism of arrhythmias. Channels (Austin) 2020; 13:520-532. [PMID: 31790629 PMCID: PMC6930018 DOI: 10.1080/19336950.2019.1697127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PI 3-kinase α (PI3Kα) is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3). PI3Kα regulates a variety of cellular processes such as nutrient sensing, cell cycle, migration, and others. Heightened activity of PI3Kα in many types of cancer made it a prime oncology drug target, but also raises concerns of possible adverse effects on the heart. Indeed, recent advances in preclinical models demonstrate an important role of PI3Kα in the control of cytoskeletal integrity, Na+ channel activity, cardioprotection, and prevention of arrhythmias.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | | | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Makita S, Maruyama D, Tobinai K. Safety and Efficacy of Brentuximab Vedotin in the Treatment of Classic Hodgkin Lymphoma. Onco Targets Ther 2020; 13:5993-6009. [PMID: 32606807 PMCID: PMC7320890 DOI: 10.2147/ott.s193951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/11/2020] [Indexed: 01/01/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a B-cell-derived lymphoid malignancy with the most favorable prognosis among various adult malignancies. However, once it becomes refractory disease to chemotherapy or relapses after high-dose chemotherapy (HDC) with autologous stem cell transplantation (ASCT), it is difficult to manage with conventional cytotoxic chemotherapy. The introduction of brentuximab vedotin (BV) has changed the treatment landscape of cHL in the past decade. Several studies demonstrated high efficacy of BV monotherapy in heavily treated patients with cHL relapsed or refractory after HDC/ASCT. Recent studies also reported high efficacy of concurrent or sequential combination of BV and chemotherapy in patients with transplant-eligible relapsed/refractory cHL at the second-line setting. In addition, a randomized phase III trial ECHELON-1 reported a positive result of BV in combination with AVD (doxorubicin, vinblastine, and dacarbazine) in patients with newly diagnosed advanced-stage cHL. In this review, we summarize available data of BV for cHL and discuss the current and future role of BV in the management of cHL.
Collapse
Affiliation(s)
- Shinichi Makita
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
17
|
Abstract
OPINION STATEMENT Phosphatidylinositol 3-kinase (PI3K) inhibitors represent a novel class of agents targeting the key cellular regulatory PI3K/AKT/mTOR pathway involved in crucial functions such as cellular proliferation, cell cycle regulation, protein synthesis, and cell motility. This review starts with an overview of the PI3K pathway and the rationale for its targeting in lymphoma and potential on-target side effects of PI3K inhibition. With three agents now FDA approved for the treatment of relapsed and refractory (R/R) indolent non-Hodgkin lymphoma (iNHL), idelalisib, copanlisib, and duvelisib, we aim to review the pivotal trials leading to their approval as well as their clinical applications according to lymphoma subtypes. Important treatment-related adverse events are also reviewed and a perspective on the clinical role of these agents is provided, as well as some practical guidance on how to prevent, monitor, and manage potential adverse events in the clinic. PI3K inhibitors have an established role in the management of R/R iNHL, but their use and development are hampered by adverse events, particularly when used in combination with other anti-lymphoma therapies. Finally, this review highlights areas in need of more research in order to optimally use these agents in the care of patients with lymphoma.
Collapse
|
18
|
Mechanistic basis for PI3K inhibitor antitumor activity and adverse reactions in advanced breast cancer. Breast Cancer Res Treat 2020; 181:233-248. [PMID: 32274666 DOI: 10.1007/s10549-020-05618-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The phosphatidylinositol 3-kinase (PI3K) pathway is involved in several physiological processes, including glucose metabolism, cell proliferation, and cell growth. Hyperactivation of this signaling pathway has been associated with tumorigenesis and resistance to treatment in various cancer types. Mutations that activate PIK3CA, encoding the PI3K isoform p110α, are common in breast cancer, particularly in the hormone receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) subtype. A number of PI3K inhibitors have been developed and evaluated for potential clinical use in combinations targeting multiple signaling pathways in cancer. The purpose of this review is to provide an overview of PI3K inhibitor mechanisms of action for antitumor activity and adverse events in advanced breast cancer (ABC). METHODS Published results from phase 3 trials evaluating the efficacy and safety of PI3K inhibitors in patients with ABC and relevant literature were reviewed. RESULTS Although PI3K inhibitors have been shown to prolong progression-free survival (PFS), the therapeutic index is often unfavorable. Adverse events, such as hyperglycemia, rash, and diarrhea are frequently observed in these patients. In particular, hyperglycemia is intrinsically linked to the inhibition of PI3Kα, a key mediator of insulin signaling. Off-target effects, including mood disorders and liver toxicity, have also been associated with some PI3K inhibitors. CONCLUSION Recent clinical trial results show that specifically targeting PI3Kα can improve PFS and clinical benefit. Broad inhibition of class I PI3Ks appears to result in an unfavorable safety profile due to off-target effects, limiting the clinical utility of the early PI3K inhibitors.
Collapse
|
19
|
Janssen JM, Dorlo TPC, Steeghs N, Beijnen JH, Hanff LM, van Eijkelenburg NKA, van der Lugt J, Zwaan CM, Huitema ADR. Pharmacokinetic Targets for Therapeutic Drug Monitoring of Small Molecule Kinase Inhibitors in Pediatric Oncology. Clin Pharmacol Ther 2020; 108:494-505. [PMID: 32022898 DOI: 10.1002/cpt.1808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
In recent years new targeted small molecule kinase inhibitors have become available for pediatric patients with cancer. Relationships between drug exposure and treatment response have been established for several of these drugs in adults. Following these exposure-response relationships, pharmacokinetic (PK) target minimum plasma rug concentration at the end of a dosing interval (Cmin ) values to guide therapeutic drug monitoring (TDM) in adults have been proposed. Despite the fact that variability in PK may be even larger in pediatric patients, TDM is only sparsely applied in pediatric oncology. Based on knowledge of the PK, mechanism of action, molecular driver, and pathophysiology of the disease, we bridge available data on the exposure-efficacy relationship from adults to children and propose target Cmin values to guide TDM for the pediatric population. Dose adjustments in individual pediatric patients can be based on these targets. Nevertheless, further research should be performed to validate these targets.
Collapse
Affiliation(s)
- Julie M Janssen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Lidwien M Hanff
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Hematology and Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, Janin A, Zhao WL. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther 2020; 5:15. [PMID: 32296035 PMCID: PMC7058622 DOI: 10.1038/s41392-020-0113-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei Qin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Yu-Jia Huo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Qing Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
21
|
Vassilakopoulos TP, Asimakopoulos JV, Konstantopoulos K, Angelopoulou MK. Optimizing outcomes in relapsed/refractory Hodgkin lymphoma: a review of current and forthcoming therapeutic strategies. Ther Adv Hematol 2020; 11:2040620720902911. [PMID: 32110285 PMCID: PMC7026824 DOI: 10.1177/2040620720902911] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
The outcome of patients with relapsed/refractory classical Hodgkin lymphoma (rr-cHL) has improved considerably in recent years owing to the approval of highly active novel agents such as brentuximab vedotin and Programmed Death-1 (PD-1) inhibitors. Although no randomized trials have been conducted to provide formal proof, it is almost undisputable that the survival of these patients has been prolonged. As autologous stem-cell transplantation (SCT) remains the standard of care for second-line therapy of most patients with rr-cHL, optimization of second-line regimens with the use of brentuximab vedotin, or, in the future, checkpoint inhibitors, is promising to increase both the eligibility rate for transplant and the final outcome. The need for subsequent therapy, and especially allogeneic SCT, can be reduced with brentuximab vedotin consolidation for 1 year, while pembrolizumab is also being tested in this setting. Several other drug categories appear to be active in rr-cHL, but their development has been delayed by the appearance of brentuximab vedotin, nivolumab and pembrolizumab, which have dominated the field of rr-cHL treatment in the last 5 years. Combinations of active drugs in chemo-free approaches may further increase efficacy and hopefully reduce toxicity in rr-cHL, but are still under development.
Collapse
Affiliation(s)
- Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., Goudi, Athens, 11527, Greece
| | - John V Asimakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Kostas Konstantopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Maria K Angelopoulou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
22
|
Merryman RW, LaCasce A. Novel agents and immune invasion in Hodgkin lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:243-248. [PMID: 31808827 PMCID: PMC6913426 DOI: 10.1182/hematology.2019000029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The approval of brentuximab vedotin (BV) and the PD-1 inhibitors nivolumab and pembrolizumab has dramatically improved outcomes for patients with relapsed or refractory (R/R) classic Hodgkin lymphoma (HL). With the goal of increasing long-term disease control rates and decreasing late toxicities, these agents are currently being tested in earlier phases of treatment in combination with chemotherapy agents. In the R/R setting, our expanding understanding of HL's various mechanisms of immune evasion and treatment resistance has spurred a growing number of rationally designed combination trials. Beyond BV and PD-1 blockade, other novel therapies have demonstrated encouraging preliminary results, including targeted agents, like the CD25 antibody-drug conjugate ADCT-301, and cellular therapies, including CD30 chimeric antigen receptor T cells and Epstein-Barr virus (EBV)-directed cytotoxic T cells. These trials, coupled with the rapid development of prognostic and predictive biomarkers, should drive additional breakthroughs that promise safer and more effective therapies for patients with HL in the future.
Collapse
Affiliation(s)
- Reid W Merryman
- Department of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ann LaCasce
- Department of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
23
|
Immune and Inflammatory Cells of the Tumor Microenvironment Represent Novel Therapeutic Targets in Classical Hodgkin Lymphoma. Int J Mol Sci 2019; 20:ijms20215503. [PMID: 31694167 PMCID: PMC6862619 DOI: 10.3390/ijms20215503] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Classical Hodgkin Lymphoma (cHL) is a B-cell malignancy that, typically, responds well to standard therapies. However, patients who relapse after standard regimens or are refractory to induction therapy have a dismal outcome. The implementation of novel therapies such as the anti-CD30 monoclonal antibody Brentuximab Vedotin and immune checkpoint inhibitors has provided curative options for many of these patients. Nonetheless, responses are rarely durable, emphasizing the need for new agents. cHL is characterized by a unique microenvironment in which cellular and humoral components interact to promote tumor survival and dissemination. Knowledge of the complex composition of cHL microenvironment is constantly evolving; in particular, there is growing interest in certain cell subsets such as tumor-associated macrophages, myeloid-derived suppressor cells and neutrophils, all of which have a relevant role in the pathogenesis of the disease. The unique biology of the cHL microenvironment has provided opportunities to develop new drugs, many of which are currently being tested in preclinical and clinical settings. In this review, we will summarize novel insights in the crosstalk between tumor cells and non-malignant inflammatory cells. In addition, we will discuss the relevance of tumor-microenvironment interactions as potential therapeutic targets.
Collapse
|
24
|
Crisci S, Di Francia R, Mele S, Vitale P, Ronga G, De Filippi R, Berretta M, Rossi P, Pinto A. Overview of Targeted Drugs for Mature B-Cell Non-hodgkin Lymphomas. Front Oncol 2019; 9:443. [PMID: 31214498 PMCID: PMC6558009 DOI: 10.3389/fonc.2019.00443] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
The improved knowledge of pathogenetic mechanisms underlying lymphomagenesis and the discovery of the critical role of tumor microenvironments have enabled the design of new drugs against cell targets and pathways. The Food and Drug Administration (FDA) has approved several monoclonal antibodies (mAbs) and small molecule inhibitors (SMIs) for targeted therapy in hematology. This review focuses on the efficacy results of the currently available targeted agents and recaps the main ongoing trials in the setting of mature B-Cell non-Hodgkin lymphomas. The objective is to summarize the different classes of novel agents approved for mature B-cell lymphomas, to describe in synoptic tables the results they achieved and, finally, to draw future scenarios as we glimpse through the ongoing clinical trials. Characteristics and therapeutic efficacy are summarized for the currently approved mAbs [i.e., anti-Cluster of differentiation (CD) mAbs, immune checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell therapy, and bispecific antibodies] as well as for SMIs i.e., inhibitors of B-cell receptor signaling, proteasome, mTOR BCL-2 HDAC pathways. The biological disease profiling of B-cell lymphoma subtypes may foster the discovery of innovative drug strategies for improving survival outcome in lymphoid neoplasms, as well as the trade-offs between efficacy and toxicity. The hope for clinical advantages should carefully be coupled with mindful awareness of the potential pitfalls and the occurrence of uneven, sometimes severe, toxicities.
Collapse
Affiliation(s)
- Stefania Crisci
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione “G. Pascale” IRCCS, Naples, Italy
| | - Raffaele Di Francia
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione “G. Pascale” IRCCS, Naples, Italy
| | - Sara Mele
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione “G. Pascale” IRCCS, Naples, Italy
| | - Pasquale Vitale
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione “G. Pascale” IRCCS, Naples, Italy
| | - Giuseppina Ronga
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione “G. Pascale” IRCCS, Naples, Italy
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione “G. Pascale” IRCCS, Naples, Italy
| |
Collapse
|
25
|
Aldinucci D, Borghese C, Casagrande N. Formation of the Immunosuppressive Microenvironment of Classic Hodgkin Lymphoma and Therapeutic Approaches to Counter It. Int J Mol Sci 2019; 20:ijms20102416. [PMID: 31096713 PMCID: PMC6566335 DOI: 10.3390/ijms20102416] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Classic Hodgkin lymphoma (cHL) is characterized by a few tumor cells surrounded by a protective, immunosuppressive tumor microenvironment composed of normal cells that are an active part of the disease. Hodgkin and Reed-Sternberg (HRS) cells evade the immune system through a variety of different mechanisms. They evade antitumor effector T cells and natural killer cells and promote T cell exhaustion. Using cytokines and extracellular vesicles, they recruit normal cells, induce their proliferation and "educate" (i.e. reprogram) them to become immunosuppressive and protumorigenic. Therefore, alternative treatment strategies are being developed to target not only tumor cells but also the tumor microenvironment. Here we summarize current knowledge on the ability of HRS cells to build their microenvironment and to educate normal cells to become immunosuppressive. We also describe therapeutic strategies to counteract formation of the tumor microenvironment and related processes leading to T cell exhaustion and repolarization of immunosuppressive tumor-associated macrophages.
Collapse
Affiliation(s)
- Donatella Aldinucci
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy.
| | - Cinzia Borghese
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy.
| | - Naike Casagrande
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy.
| |
Collapse
|
26
|
Mina AA, Vakkalagadda C, Pro B. Novel Therapies and Approaches to Relapsed/Refractory HL Beyond Chemotherapy. Cancers (Basel) 2019; 11:cancers11030421. [PMID: 30934568 PMCID: PMC6468730 DOI: 10.3390/cancers11030421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022] Open
Abstract
Although Hodgkin lymphoma (HL) is highly curable with first-line therapy, relapses occur in approximately 10–20% of patients with early stage disease and 30–40% of patients with advanced stage disease. The standard approach for relapsed or refractory disease is salvage therapy, followed by consolidation with high dose therapy and autologous stem cell transplant (ASCT). Patients who achieve a complete response to salvage therapy prior to ASCT have better outcomes, thus recent studies have focused on incorporating newer agents in this setting. Major challenges in the management of relapsed patients remain how to choose and sequence the many salvage therapies that are currently available and how to best incorporate novel agents in the current treatment paradigms. In this article, we will summarize the most recent advances in the management of patients with recurrent HL and will mainly focus on the role of new agents approved and under investigation. Aside from brentuximab vedotin and checkpoint inhibitors, other novel agents and therapies are showing promising early results. However, at least with some of the newest targeted strategies, it is important to recognize that we are facing new challenges in terms of toxicities, which require very close monitoring and education of both the patient and treating physician.
Collapse
Affiliation(s)
- Alain Antoine Mina
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine Chicago Illinois, Chicago, IL 60611, USA.
| | - Chetan Vakkalagadda
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine Chicago Illinois, Chicago, IL 60611, USA.
| | - Barbara Pro
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine Chicago Illinois, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019; 18:26. [PMID: 30782187 PMCID: PMC6379961 DOI: 10.1186/s12943-019-0954-x] [Citation(s) in RCA: 1033] [Impact Index Per Article: 172.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling is one of the most important intracellular pathways, which can be considered as a master regulator for cancer. Enormous efforts have been dedicated to the development of drugs targeting PI3K signaling, many of which are currently employed in clinical trials evaluation, and it is becoming increasingly clear that PI3K inhibitors are effective in inhibiting tumor progression. PI3K inhibitors are subdivided into dual PI3K/mTOR inhibitors, pan-PI3K inhibitors and isoform-specific inhibitors. In this review, we performed a critical review to summarize the role of the PI3K pathway in tumor development, recent PI3K inhibitors development based on clinical trials, and the mechanisms of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
Metzger ML, Mauz-Körholz C. Epidemiology, outcome, targeted agents and immunotherapy in adolescent and young adult non-Hodgkin and Hodgkin lymphoma. Br J Haematol 2019; 185:1142-1157. [PMID: 30729493 DOI: 10.1111/bjh.15789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidemiology, outcome and targeted immunotherapy in adolescent and young adult non-Hodgkin and Hodgkin lymphoma were discussed during the 6th International Symposium on Childhood, Adolescent and Young Adult Non-Hodgkin Lymphoma September 26th-29th 2018 in Rotterdam, the Netherlands. This review summarizes some of those presentations, as well as other current and novel antibody therapy, immune check-point inhibitors, chimeric antigen receptor T cells, cancer vaccines and cytotoxic T lymphocyte therapy.
Collapse
Affiliation(s)
- Monika L Metzger
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christine Mauz-Körholz
- Pädiatrische Hämatologie und Onkologie, Justus-Liebig-Universität Gießen and Medical Faculty of the Martin-Luther University of Halle, Germany
| |
Collapse
|
29
|
Keudell G, Younes A. Novel therapeutic agents for relapsed classical Hodgkin lymphoma. Br J Haematol 2018; 184:105-112. [DOI: 10.1111/bjh.15695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gottfried Keudell
- Lymphoma Service Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Anas Younes
- Lymphoma Service Memorial Sloan‐Kettering Cancer Center New York NY USA
| |
Collapse
|
30
|
Zhao Y, Dong Q, Li J, Zhang K, Qin J, Zhao J, Sun Q, Wang Z, Wartmann T, Jauch KW, Nelson PJ, Qin L, Bruns C. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol 2018; 53:139-155. [PMID: 30081228 DOI: 10.1016/j.semcancer.2018.08.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
A small subpopulation of cells within the bulk of tumors share features with somatic stem cells, in that, they are capable of self-renewal, they differentiate, and are highly resistant to conventional therapy. These cells have been referred to as cancer stem cells (CSCs). Recent reports support the central importance of a cancer stem cell-like niche that appears to help foster the generation and maintenance of CSCs. In response to signals provided by this microenvironment, CSCs express the tumorigenic characteristics that can drive tumor metastasis by the induction of epithelial-mesenchymal-transition (EMT) that in turn fosters the migration and recolonization of the cells as secondary tumors within metastatic niches. We summarize here recent advances in cancer stem cell research including the characterization of their genetic and epigenetic features, metabolic specialities, and crosstalk with aging-associated processes. Potential strategies for targeting CSCs, and their niche, by regulating CSCs plasticity, or therapeutic sensitivity is discussed. Finally, it is hoped that new strategies and related therapeutic approaches as outlined here may help prevent the formation of the metastatic niche, as well as counter tumor progression and metastatic growth.
Collapse
Affiliation(s)
- Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany; Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiahui Li
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Kaili Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Qin
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jiangang Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Qiye Sun
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Zhefang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Thomas Wartmann
- Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Karl Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Peter J Nelson
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - LunXiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
31
|
Herrera AF. Where does PD-1 blockade fit in HL therapy? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:213-220. [PMID: 30504313 PMCID: PMC6246012 DOI: 10.1182/asheducation-2018.1.213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genetic alterations of the PD-L1/PD-L2 locus on chromosome 9p24.1 are a defining biological feature of classical Hodgkin lymphoma (HL). The resulting programmed death-ligand 1 (PD-L1) expression on Hodgkin Reed-Sternberg cells as well as the PD-L1 expressed in the HL microenvironment result in an ineffective host antitumor immune response and make HL a ripe target for programmed cell death-1 (PD-1) blockade. Anti-PD-1 antibody monotherapy has been effective and well tolerated in patients with relapsed or refractory (rel/ref) HL, with the majority of patients experiencing an objective response (approximately two-thirds of patients) and a median duration of response of 16.6 months in the study with the longest follow-up. Based on these data, nivolumab and pembrolizumab were approved by the US Food and Drug Administration (FDA) for the treatment of advanced rel/ref HL. Evidence has emerged that patients with HL benefit from continued PD-1 blockade beyond disease progression according to traditionally defined response criteria, and that the addition of, or switch to, chemotherapy after anti-PD-1 antibody failure can potentially re-induce clinical response. Subsequent studies have evaluated novel anti-PD-1-based combination regimens as well as the use of anti-PD-1 antibody therapy earlier in the course of a HL patient's therapy, including first salvage therapy for rel/ref disease (eg, nivolumab plus brentuximab vedotin) and even first-line treatment (eg, nivolumab added to doxorubicin, vinblastine, dacarbazine chemotherapy). The current role of PD-1 blockade in HL is as monotherapy in patients with advanced rel/ref disease, but the results of ongoing studies and the evolving treatment landscape in HL will determine the role of PD-1 blockade in the future.
Collapse
Affiliation(s)
- Alex F Herrera
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
32
|
Abstract
Arising from the immune system and located primarily in lymphoid organs, Hodgkin lymphoma (HL) is one of the most common cancers in young adults. Risk-adapted first-line treatment usually consisting of multi-agent chemotherapy and often incorporating consolidative radiation therapy aims at long-term cure. Although this is achieved in the vast majority of patients, therapy-related side effects such as organ damage, second cancers, and fatigue constitute considerable sequelae and outweigh HL as the cause of mortality after successful first-line treatment. In addition, intensive conventional therapy is seldom feasible in elderly or frail patients, diminishing chances of cure in this growing population of patients. The rapidly growing understanding of HL biology, innovative clinical trials, and the incorporation of novel drugs might help to overcome these obstacles in the management of HL. In this review, recent advances in the understanding and care of HL will be summarized with a focus on ongoing and future strategies which might help move things forward.
Collapse
Affiliation(s)
- Paul J. Bröckelmann
- German Hodgkin Study Group and Department I of Internal Medicine, University Hospital of Cologne, Cologne, 50937, Germany
| | - Boris Böll
- German Hodgkin Study Group and Department I of Internal Medicine, University Hospital of Cologne, Cologne, 50937, Germany
| |
Collapse
|
33
|
Affiliation(s)
- Boris Böll
- German Hodgkin Study Group and Department I of Internal Medicine; University Hospital of Cologne; Cologne Germany
| | - Helen Görgen
- German Hodgkin Study Group and Department I of Internal Medicine; University Hospital of Cologne; Cologne Germany
| |
Collapse
|
34
|
Barbieux S, Boyle EM, Baillet C, Demarquette H, Vermersch P, Morschhauser F, Herbaux C. Acute polyradiculopathy secondary to idelalisib in Relapsed Classical Hodgkin's lymphoma. Curr Res Transl Med 2018; 66:87-89. [PMID: 30191811 DOI: 10.1016/j.retram.2018.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 10/28/2022]
Abstract
Patients with relapsed or refractory Hodgkin's lymphoma are likely incurable with standard treatment. Idelalisib, a delta-isoform specific Phosphatidyl-inositol-3-kinase (PI3K) inhibitor has shown its efficacy in other hematopoietic B malignancies. We report the case of a 51-years old patient with relapsed and refractory Hodgkin's Lymphoma receiving idelalisib after several regimens of chemotherapy. He achieved a good partial response for several months, unfortunately, idelalisib had to be stopped because of the onset of a severe polyradiculoneuritis attributed to this treatment. We assume here that the polyradiculoneuritis could be caused by T cell mediated autoimmunity to myelin proteins. To our knowledge, this adverse event has never been described so far with idelalisib.
Collapse
Affiliation(s)
- S Barbieux
- Hematology Department, Huriez Hospital, University of Lille, Lille, France
| | - E M Boyle
- Hematology Department, Huriez Hospital, University of Lille, Lille, France
| | - C Baillet
- Nuclear Medicine Department, Huriez Hospital, University of Lille, Lille, France
| | - H Demarquette
- Hematology Department, Huriez Hospital, University of Lille, Lille, France
| | - P Vermersch
- Univ Lille, CHU Lille, LIRIC-INSERM U995, FHU-Imminent, Lille, France
| | - F Morschhauser
- Hematology Department, Huriez Hospital, University of Lille, Lille, France; Groupe de Recherche sur les Formes Injectables et les Technologies Associées, Lille, France
| | - C Herbaux
- Hematology Department, Huriez Hospital, University of Lille, Lille, France.
| |
Collapse
|
35
|
Phase 1 study of the PI3Kδ inhibitor INCB040093 ± JAK1 inhibitor itacitinib in relapsed/refractory B-cell lymphoma. Blood 2018; 132:293-306. [PMID: 29695516 DOI: 10.1182/blood-2017-10-812701] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Because both phosphatidylinositol 3-kinase δ (PI3Kδ) and Janus kinase (JAK)-signal transducer and activator of transcription pathways contribute to tumor cell proliferation and survival in B-cell malignancies, their simultaneous inhibition may provide synergistic treatment efficacy. This phase 1 dose-escalation/expansion study assessed the safety, efficacy, pharmacokinetics, and pharmacodynamics of INCB040093, a selective PI3Kδ inhibitor, as monotherapy or combined with itacitinib (formerly INCB039110), a selective JAK1 inhibitor, in adult patients with relapsed or refractory (R/R) B-cell lymphomas. Final results are reported. Overall, 114 patients were treated (monotherapy, n = 49; combination therapy, n = 72 [7 patients crossed over from monotherapy to combination]). INCB040093 100 mg twice daily (monotherapy) and INCB040093 100 mg twice daily + itacitinib 300 mg once daily (combination) were the recommended phase 2 doses. One dose-limiting toxicity (gastrointestinal bleed secondary to gastric diffuse large B-cell lymphoma [DLBCL] regression) occurred with monotherapy. The most common serious adverse events with monotherapy were pneumonia (n = 5) and pyrexia (n = 4), and with combination Pneumocystis jiroveci pneumonia (n = 5), pneumonia (unrelated to P jiroveci; n = 5), and pyrexia (n = 4). Grade 3 or higher transaminase elevations were less common with combination. INCB040093 was active across the B-cell lymphomas; 63% of patients (5/8) with follicular lymphoma responded to monotherapy. Adding itacitinib provided promising activity in select subtypes, with responses of 67% (14/21) in classic Hodgkin lymphoma (vs 29% [5/17] with monotherapy) and 31% (4/13) in nongerminal center B-cell-like DLBCL. INCB040093 with/without itacitinib was tolerated and active in this study, and is a promising treatment strategy for patients with select R/R B-cell lymphomas. This trial was registered at www.clinicaltrials.gov as #NCT01905813.
Collapse
|
36
|
Biology of classical Hodgkin lymphoma: implications for prognosis and novel therapies. Blood 2018; 131:1654-1665. [PMID: 29500175 DOI: 10.1182/blood-2017-09-772632] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Hodgkin lymphoma is considered a prime example of treatment success, with cure rates exceeding 80% using modern combined modality therapies. However, especially in adolescents and young adults, treatment-related toxicity and long-term morbidity still represent persistent challenges. Moreover, outcomes in patients with relapsed or refractory disease remain unfavorable in the era of high-dose chemotherapy and stem-cell transplantation. Hence, there is a high demand for novel and innovative alternative treatment approaches. In recent years, many new therapeutic agents have emerged from preclinical and clinical studies that target molecular hallmarks of Hodgkin lymphoma, including the aberrant phenotype of the tumor cells, deregulated oncogenic pathways, and immune escape. The antibody-drug conjugate brentuximab vedotin and immune checkpoint inhibitors have already shown great success in patients with relapsed/refractory disease, leading to US Food and Drug Administration approval and new trials testing these agents in various clinical settings. The expanding knowledge and understanding of Hodgkin lymphoma biology and disease progression, as well as the development of robust tools for biomarker-driven risk stratification and therapeutic decision making, continue to be fundamentally important for the success of these and other novel agents. We anticipate that the availability and clinical implementation of novel molecular assays will be instrumental in an era of rapid shifts in the treatment landscape of this disease. Here, we review the current knowledge of Hodgkin lymphoma pathobiology, highlighting the related development of novel treatment strategies and prognostic models that hold the promise to continually challenge and change the current standard of care in classical Hodgkin lymphoma.
Collapse
|
37
|
Abstract
B cell receptor (BCR) signalling is crucial for normal B cell development and adaptive immunity. BCR signalling also supports the survival and growth of malignant B cells in patients with B cell leukaemias or lymphomas. The mechanism of BCR pathway activation in these diseases includes continuous BCR stimulation by microbial antigens or autoantigens present in the tissue microenvironment, activating mutations within the BCR complex or downstream signalling components and ligand-independent tonic BCR signalling. The most established agents targeting BCR signalling are Bruton tyrosine kinase (BTK) inhibitors and PI3K isoform-specific inhibitors, and their introduction into the clinic is rapidly changing how B cell malignancies are treated. B cells and BCR-related kinases, such as BTK, also play a role in the microenvironment of solid tumours, such as squamous cell carcinoma and pancreatic cancer, and therefore targeting B cells or BCR-related kinases may have anticancer activity beyond B cell malignancies.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Drug Resistance, Neoplasm
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/metabolism
- Molecular Targeted Therapy/methods
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
38
|
Mauz-Körholz C, Ströter N, Baumann J, Botzen A, Körholz K, Körholz D. Pharmacotherapeutic Management of Pediatric Lymphoma. Paediatr Drugs 2018; 20:43-57. [PMID: 29127674 DOI: 10.1007/s40272-017-0265-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) comprise approximately 15% of all childhood malignancies. Cure rates for both lymphoma entities have evolved tremendously during the last couple of decades, raising the 5-year survival rates to almost 100% for HL and to 85% for NHL. The mainstay therapy for both malignancies is still chemotherapy-with different regimens recommended for different types of disease. In HL, combined modality treatment, i.e., chemotherapy followed by radiotherapy, has long been the standard regimen. In order to reduce long-term side effects, such as second malignancies, most major pediatric HL consortia have studied response-based radiotherapy reduction strategies over the last 3 decades. For recurrent disease, high-dose chemotherapy followed by an autologous or an allogeneic hematopoietic stem-cell transplant is an option. No targeted agents have yet gained regulatory approval for use in pediatric patients with lymphoma. For adult lymphoma patients, the CD20 antibody rituximab and the CD30 antibody-drug conjugate brentuximab vedotin are targeted agents used regularly in first- and second-line treatment regimens. More recently, immune checkpoint inhibitors, phosphatidyl-inositol-3-kinase inhibitors, and Bruton's tyrosine kinase inhibitors appear to be very promising new treatment options in adult lymphoma. Here, we discuss the current experience with these types of agents in pediatric lymphoma patients.
Collapse
Affiliation(s)
- Christine Mauz-Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany. .,Medical Faculty of the Martin-Luther-University of Halle-Wittenberg, Halle, Germany.
| | - Natascha Ströter
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Julia Baumann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Ante Botzen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Katharina Körholz
- Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research center (DKFZ), Heidelberg, Germany
| | - Dieter Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| |
Collapse
|
39
|
Watkins MP, Fanale MA, Bartlett NL. SOHO State of the Art Updates and Next Questions: Hodgkin Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:81-90. [PMID: 29366607 DOI: 10.1016/j.clml.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 01/05/2023]
Abstract
Until recently, advances in classic Hodgkin lymphoma (HL) treatment primarily consisted of minor modifications of highly effective decades-old chemotherapy and radiation approaches. In early-stage disease, excellent outcomes have been reported with fewer cycles of chemotherapy, lower doses, smaller radiation fields and in some circumstances, radiation elimination. In advanced-stage disease, maintaining the dose intensity of standard chemotherapy regimens has resulted in modest improvements in outcomes. During the past decade, the use of early interim positron emission tomography (PET) scans to escalate or de-escalate treatment has been the subject of intense investigation with the goal of maximizing efficacy and minimizing toxicity. Important updates from recent PET-directed trials include; elimination of bleomycin in patients with advanced-stage HL and negative interim PET findings, the benefit of therapy escalation in patients with unfavorable early-stage HL and positive interim PET findings, and the minimal benefit of consolidative radiotherapy in patients with unfavorable early-stage HL and negative interim PET findings. A more nuanced approach to consolidative radiotherapy is required for patients with favorable early-stage disease based on age, disease sites, secondary cancer risk, and cardiovascular disease. Brentuximab vedotin and nivolumab/pembrolizumab have provided promising new options with surprisingly high response rates and modest toxicity for patients with relapsed HL whose disease does not respond to standard treatments. Incorporating these agents into earlier therapy is an area of active investigation for all stages of HL. Although the overall prognosis for HL patients has seen incremental improvement, efforts to optimize treatment with more effective and less toxic approaches continue.
Collapse
|
40
|
Abstract
Idelalisib (GS-1101, CAL-101, Zydelig®) is an orally bioavailable, small-molecule inhibitor of the delta isoform (p110δ) of the enzyme phosphoinositide 3-kinase (PI3K). In contrast to the other PI3K isoforms, PI3Kδ is expressed selectively in hematopoietic cells. PI3Kδ signaling is active in many B-cell leukemias and lymphomas. By inhibiting the PI3Kδ protein, idelalisib blocks several cellular signaling pathways that maintain B-cell viability. Idelalisib is the first PI3K inhibitor approved by the US Food and Drug Administration (FDA). Treatment with idelalisib is indicated in relapsed/refractory chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and small lymphocytic lymphoma (SLL). This review presents the preclinical and clinical activity of idelalisib with a focus on clinical studies in CLL.
Collapse
|