1
|
Ramos-Muñoz M, Blanco-Sánchez M, Pías B, Escudero A, Matesanz S. Transgenerational plasticity to drought: contrasting patterns of non-genetic inheritance in two semi-arid Mediterranean shrubs. ANNALS OF BOTANY 2024; 134:101-116. [PMID: 38488820 PMCID: PMC11161564 DOI: 10.1093/aob/mcae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS Intra- and transgenerational plasticity may provide substantial phenotypic variation to cope with environmental change. Since assessing the unique contribution of the maternal environment to the offspring phenotype is challenging in perennial, outcrossing plants, little is known about the evolutionary and ecological implications of transgenerational plasticity and its persistence over the life cycle in these species. We evaluated how intra- and transgenerational plasticity interplay to shape the adaptive responses to drought in two perennial Mediterranean shrubs. METHODS We used a novel common garden approach that reduced within-family genetic variation in both the maternal and offspring generations by growing the same maternal individual in two contrasting watering environments, well-watered and drought, in consecutive years. We then assessed phenotypic differences at the reproductive stage between offspring reciprocally grown in the same environments. KEY RESULTS Maternal drought had an effect on offspring performance only in Helianthemum squamatum. Offspring of drought-stressed plants showed more inflorescences, less sclerophyllous leaves and higher growth rates in both watering conditions, and heavier seeds under drought, than offspring of well-watered maternal plants. Maternal drought also induced similar plasticity patterns across maternal families, showing a general increase in seed mass in response to offspring drought, a pattern not observed in the offspring of well-watered plants. In contrast, both species expressed immediate adaptive plasticity, and the magnitude of intragenerational plasticity was larger than the transgenerational plastic responses. CONCLUSIONS Our results highlight that adaptive effects associated with maternal drought can persist beyond the seedling stage and provide evidence of species-level variation in the expression of transgenerational plasticity. Such differences between co-occurring Mediterranean species in the prevalence of this form of non-genetic inheritance may result in differential vulnerability to climate change.
Collapse
Affiliation(s)
- Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Mario Blanco-Sánchez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Beatriz Pías
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, C/José Antonio Nováis 2, 28040, Madrid, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
2
|
Travis J, Trexler JC. Phenotypic plasticity in the sailfin molly III: Geographic variation in reaction norms of growth and maturation to temperature and salinity. Ecol Evol 2024; 14:e11482. [PMID: 38826157 PMCID: PMC11140554 DOI: 10.1002/ece3.11482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Phenotypic plasticity, the ability of a single genotype to produce different phenotypes under different environmental conditions, plays a profound role in several areas of evolutionary biology. One important role is as an adaptation to a variable environment. While plasticity is extremely well documented in response to many environmental factors, there is controversy over how much of that plasticity is adaptive. Evidence is also mixed over how often conspecific populations display qualitative differences in the nature of plasticity. We present data on the reaction norms of growth and maturation to variation in temperature and salinity in male and female sailfin mollies (Poecilia latipinna) from three locally adjacent populations from South Carolina (SC). We compare these reaction norms to those previously reported in locally adjacent populations from north Florida (NF). In general, patterns of plasticity in fish from SC were similar to those in fish from NF. The magnitude of plasticity differed; fish from SC displayed less plasticity than fish from NF. This was because SC fish grew faster and matured earlier at the lower temperatures and salinities compared to NF fish. This is a countergradient pattern of variation, in which SC fish grew faster and matured earlier in conditions that would otherwise slow growth and delay maturity. Among fish from both regions, males were much less plastic than females, especially for length at maturity. While there was no detectable heterogeneity among populations from NF, males from one of the SC populations, which is furthest from the other two, displayed a qualitatively different response in age at maturity to temperature variation than did males from the other two SC populations. The pattern of population variation in plasticity within and among regions suggests that gene flow, which diminishes with distance in sailfin mollies, plays a critical role in constraining divergence in norms of reaction.
Collapse
Affiliation(s)
- Joseph Travis
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Joel C. Trexler
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
3
|
Krintza N, Dener E, Seifan M. Stress Induces Trait Variability across Multiple Spatial Scales in the Arid Annual Plant Anastatica hierochuntica. PLANTS (BASEL, SWITZERLAND) 2024; 13:256. [PMID: 38256809 PMCID: PMC10820187 DOI: 10.3390/plants13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Variations in plant characteristics in response to habitat heterogeneity can provide valuable insights into the mechanisms governing plant responses to environmental conditions. In this study, we investigated the role of environmental factors associated with arid conditions in shaping the phenotypic responses of an arid annual plant, Anastatica hierochuntica, across several populations found along an aridity gradient and across multiple spatial scales. Utilizing both field surveys and a net house experiment, we assessed the effects of environmental factors on trait variability within and between populations. The results indicated a significant convergence in plant height due to site aridity, reflecting growth potential based on abiotic resources. Convergence was also observed in the plant's electrolyte leakage with aridity and in plant height concerning soil salinity at specific sites. Phenotypic plasticity was pivotal in maintaining trait variability, with plant height plasticity increasing with soil salinity, SLA plasticity decreasing with aridity, and leaf number plasticity rising with aridity. In conclusion, our findings underscore the adaptive significance of phenotypic variability, especially plasticity, in arid conditions. Notably, trait variability and plasticity did not consistently diminish in stressful settings, emphasizing the adaptive value of flexible responses in such environments.
Collapse
Affiliation(s)
- Nir Krintza
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| | - Efrat Dener
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environment and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environment and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| |
Collapse
|
4
|
Felmy A, Reznick DN, Travis J, Potter T, Coulson T. Life histories as mosaics: plastic and genetic components differ among traits that underpin life-history strategies. Evolution 2022; 76:585-604. [PMID: 35084046 PMCID: PMC9303950 DOI: 10.1111/evo.14440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Life‐history phenotypes emerge from clusters of traits that are the product of genes and phenotypic plasticity. If the impact of the environment differs substantially between traits, then life histories might not evolve as a cohesive whole. We quantified the sensitivity of components of the life history to food availability, a key environmental difference in the habitat occupied by contrasting ecotypes, for 36 traits in fast‐ and slow‐reproducing Trinidadian guppies. Our dataset included six putatively independent origins of the slow‐reproducing, derived ecotype. Traits varied substantially in plastic and genetic control. Twelve traits were influenced only by food availability (body lengths, body weights), five only by genetic differentiation (interbirth intervals, offspring sizes), 10 by both (litter sizes, reproductive timing), and nine by neither (fat contents, reproductive allotment). Ecotype‐by‐food interactions were negligible. The response to low food was aligned with the genetic difference between high‐ and low‐food environments, suggesting that plasticity was adaptive. The heterogeneity among traits in environmental sensitivity and genetic differentiation reveals that the components of the life history may not evolve in concert. Ecotypes may instead represent mosaics of trait groups that differ in their rate of evolution.
Collapse
Affiliation(s)
- Anja Felmy
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, United Kingdom
| | - David N Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California, 922521, USA
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA
| | - Tomos Potter
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, United Kingdom
| | - Tim Coulson
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, United Kingdom
| |
Collapse
|
5
|
Kosová V, Hájek T, Hadincová V, Münzbergová Z. The importance of ecophysiological traits in response of Festuca rubra to changing climate. PHYSIOLOGIA PLANTARUM 2022; 174:e13608. [PMID: 34837234 DOI: 10.1111/ppl.13608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of the ability of plants to respond to climate change via phenotypic plasticity or genetic adaptation in ecophysiological traits and of the link of these traits to fitness is still limited. We studied the clonal grass Festuca rubra from 11 localities representing factorially crossed gradients of temperature and precipitation and cultivated them in growth chambers simulating temperature and moisture regime in the four extreme localities. We measured net photosynthetic rate, Fv /Fm , specific leaf area, osmotic potential and stomatal density and length and tested their relationship to proxies of fitness. We found strong phenotypic plasticity in photosynthetic traits and genetic differentiation in stomatal traits. The effects of temperature and moisture interacted (either as conditions of origin or growth chambers), as were effects of growth and origin. The relationships between the ecophysiological and fitness-related traits were significant but weak. Phenotypic plasticity and genetic differentiation of the species indicate the potential ability of F. rubra to adapt to novel climatic conditions. The most important challenge for the plants seems to be increasing moisture exposing plants to hypoxia. However, the plants have the potential to respond to increased moisture by changes in stomatal size and density and adjustments of osmotic potential. Changes in ecophysiological traits translate into variation in plant fitness, but the selection on the traits is relatively weak and depends on actual conditions. Despite the selection, the plants do not show strong local adaptation and local adaptation is thus likely not restricting species ability to adjust to novel conditions.
Collapse
Affiliation(s)
- Veronika Kosová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Hájek
- Institute of Botany, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Matesanz S, Blanco-Sánchez M, Ramos-Muñoz M, de la Cruz M, Benavides R, Escudero A. Phenotypic integration does not constrain phenotypic plasticity: differential plasticity of traits is associated to their integration across environments. THE NEW PHYTOLOGIST 2021; 231:2359-2370. [PMID: 34097309 DOI: 10.1111/nph.17536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Understanding constraints to phenotypic plasticity is key given its role on the response of organisms to environmental change. It has been suggested that phenotypic integration, the structure of trait covariation, could limit trait plasticity. However, the relationship between plasticity and integration is far from resolved. Using a database of functional plasticity to drought of a Mediterranean shrub that included 20 ecophysiological traits, we assessed environmentally-induced changes in phenotypic integration and whether integration constrained the expression of plasticity, accounting for the within-environment phenotypic variation of traits. Furthermore, we provide the first test of the association between differential trait plasticity and trait integration across an optimum and a stressful environment. Phenotypic plasticity was positively associated with phenotypic integration in both environments, but this relationship was lost when phenotypic variation was considered. The similarity in the plastic response of two traits predicted their integration across environments, with integrated traits having more similar plasticity. Such variation in the plasticity of traits partly explained the lower phenotypic integration found in the stressful environment. We found no evidence that integration may constitute an internal constraint to plasticity. Rather, we present the first empirical demonstration that differences in plastic responses may involve a major reorganization of the relationships among traits, and challenge the notion that stress generally induces a tighter phenotype.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| | - Mario Blanco-Sánchez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| | - Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| | - Marcelino de la Cruz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| | - Raquel Benavides
- Centro de Estudos Florestais, ISA, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| |
Collapse
|
7
|
Vélez-Mora DP, Trigueros-Alatorre K, Quintana-Ascencio PF. Evidence of Morphological Divergence and Reproductive Isolation in a Narrow Elevation Gradient. Evol Biol 2021. [DOI: 10.1007/s11692-021-09541-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Martín-Rodríguez I, Escudero A, García-Fernández A. Limited effect of a highway barrier on the genetic structure of a gypsum soil specialist. PeerJ 2021; 9:e10533. [PMID: 33505788 PMCID: PMC7789860 DOI: 10.7717/peerj.10533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
Background Gypsum ecosystems are edaphic islands surrounded by a matrix that is inhospitable to gypsum soil plant specialists. These naturally fragmented landscapes are currently exacerbated due to man-made disturbances, jeopardising their valuable biodiversity. Concomitant action of other fragmentation drivers such as linear infrastructures may increase the already high threat to these specialists. Although some evidence suggest that gypsophytes are not evolutionary dead-ends and can respond to fragmentation by means of phenotypic plasticity, the simultaneous action of barriers to genetic flow can pose a severe hazard to their viability. Here, we evaluated the effect of a highway with heavy traffic on the genetic flow and diversity in the species Lepidium subulatum, a dominant Iberian shrubby gypsophyte. Methods We tested the possible existence of bottlenecks, and estimated the genetic diversity, gene flow and genetic structure in the remnant populations, exploring in detail the effect of a highway as a possible barrier. Results Results showed variability in genetic diversity, migrants and structure. The highway had a low impact on the species since populations can retain high levels of genetic diversity and genetic parameter, like FST and FIS, did not seem to be affected. The presence of some level of genetic flow in both sides along the highway could explain the relatively high genetic diversity in the habitat remnants. Discussion Natural fragmentation and their exacerbation by agriculture and linear infrastructures seem to be negligible for this species and do not limit its viability. The biological features, demographic dynamics and population structures of gypsum species seem to be a valuable, adaptive pre-requisite to be a soil specialist and to maintain its competitiveness with other species in such adverse stressful conditions.
Collapse
Affiliation(s)
- Irene Martín-Rodríguez
- Área de Biodiversidad y Conservación. Departamento de Biología y Geología, Física y Química Orgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación. Departamento de Biología y Geología, Física y Química Orgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Alfredo García-Fernández
- Área de Biodiversidad y Conservación. Departamento de Biología y Geología, Física y Química Orgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| |
Collapse
|