1
|
Zeng X, Wang Y, Morishima K. Design and Demonstration of Hingeless Pneumatic Actuators Inspired by Plants. Biomimetics (Basel) 2024; 9:597. [PMID: 39451803 PMCID: PMC11506502 DOI: 10.3390/biomimetics9100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Soft robots have often been proposed for medical applications, creating human-friendly machines, and dedicated subject operation, and the pneumatic actuator is a representative example of such a robot. Plants, with their hingeless architecture, can take advantage of morphology to achieve a predetermined deformation. To improve the modes of motion, two pneumatic actuators that mimic the principles of the plants (the birds-of-paradise plant and the waterwheel plant) were designed, simulated, and tested using physical models in this study. The most common deformation pattern of the pneumatic actuator, bending deformation, was utilized and hingeless structures based on the plants were fabricated for a more complex motion of the lobes. Here, an ABP (actuator inspired by the birds-of-paradise plant) could bend its midrib downward to open the lobes, but an AWP (actuator inspired by the waterwheel plant) could bend its midrib upward to open the two lobes. In both the computational and physical models, the associated movements of the midrib and lobes could be observed and measured. As it lacks multiple parts that have to be assembled using joints, the actuator would be simpler to fabricate, have a variety of deformation modes, and be applicable in more fields.
Collapse
Affiliation(s)
| | | | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan; (X.Z.); (Y.W.)
| |
Collapse
|
2
|
Fiorello I, Ronzan M, Speck T, Sinibaldi E, Mazzolai B. A Biohybrid Self-Dispersing Miniature Machine Using Wild Oat Fruit Awns for Reforestation and Precision Agriculture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313906. [PMID: 38583068 DOI: 10.1002/adma.202313906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Advances in bioinspired and biohybrid robotics are enabling the creation of multifunctional systems able to explore complex unstructured environments. Inspired by Avena fruits, a biohybrid miniaturized autonomous machine (HybriBot) composed of a biomimetic biodegradable capsule as cargo delivery system and natural humidity-driven sister awns as biological motors is reported. Microcomputed tomography, molding via two-photon polymerization and casting of natural awns into biodegradable materials is employed to fabricate multiple HybriBots capable of exploring various soil and navigating soil irregularities, such as holes and cracks. These machines replicate the dispersal movements and biomechanical performances of natural fruits, achieving comparable capsule drag forces up to ≈0.38 N and awns torque up to ≈100 mN mm-1. They are functionalized with fertilizer and are successfully utilized to germinate selected diaspores. HybriBots function as self-dispersed systems with applications in reforestation and precision agriculture.
Collapse
Affiliation(s)
- Isabella Fiorello
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics Laboratory, Via Morego 30, Genova, 16163, Italy
- University of Freiburg, Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
- University of Freiburg, Plant Biomechanics Group, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Marilena Ronzan
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics Laboratory, Via Morego 30, Genova, 16163, Italy
| | - Thomas Speck
- University of Freiburg, Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
- University of Freiburg, Plant Biomechanics Group, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Edoardo Sinibaldi
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics Laboratory, Via Morego 30, Genova, 16163, Italy
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics Laboratory, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
3
|
Jentzsch M, Albiez V, Kardamakis TC, Speck T. Analysis of the peel structure of different Citrus spp. via light microscopy, SEM and μCT with manual and automatic segmentation. SOFT MATTER 2024; 20:2804-2811. [PMID: 38446076 DOI: 10.1039/d3sm01511d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The peels of lime, lemon, pomelo and citron are investigated at macroscopic and microscopic level. The structural composition of the peels is compared and properties such as peel thickness, proportion of flavedo, density and proportion of intercellular spaces are determined. μCT images are used to visualize vascular bundles and oil glands. SEM images provide information about the appearance of the cellular tissue in the outer flavedo and inner albedo. The proportion of intercellular spaces is quantitatively determined by manual and software-assisted analysis (ilastik). While there are macroscopic differences in the fruits, they differ only slightly in the orientation of the vascular bundles and the arrangement of the oil glands. However, in peel thickness and flavedo thickness, the fruit peels differ significantly from each other. There are no significant differences between the two analysis methods used, although the use of ilastik is preferred due to time reduction of up to 70%. The large amount of intercellular spaces in the albedo but also the denser flavedo both have a mechanical protective function to prevent damage to the fruit. In addition, the entire peel structure is mechanically reinforced by vascular bundles. This combination of penetration protection (flavedo) and energy dissipation (albedo) makes Citrus spp. peels a promising inspiration for technical material systems.
Collapse
Affiliation(s)
- Maximilian Jentzsch
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Vanessa Albiez
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany.
| | - Thalia C Kardamakis
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany.
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
4
|
Jakšová J, Adamec L, Petřík I, Novák O, Šebela M, Pavlovič A. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:459-465. [PMID: 34166972 DOI: 10.1016/j.plaphy.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial carnivorous plants of genera Drosera, Dionaea and Nepenthes within the order Caryophyllales employ jasmonates for the induction of digestive processes in their traps. Here, we focused on two aquatic carnivorous plant genera with different trapping mechanism from distinct families and orders: Aldrovanda (Droseraceae, Caryophyllales) with snap-traps and Utricularia (Lentibulariaceae, Lamiales) with suction traps. Using phytohormone analyses and simple biotest, we asked whether the jasmonates are involved in the activation of carnivorous response similar to that known in traps of terrestrial genera of Droseraceae (Drosera, Dionaea). The results showed that Utricularia, in contrast with Aldrovanda, does not use jasmonates for activation of carnivorous response and is the second genus in Lamiales, which has not co-opted jasmonate signalling for botanical carnivory. On the other hand, the nLC-MS/MS analyses revealed that both genera secreted digestive fluid containing cysteine protease homologous to dionain although the mode of its regulation may differ. Whereas in Utricularia the cysteine protease is present constitutively in digestive fluid, it is induced by prey and exogenous application of jasmonic acid in Aldrovanda.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Department of Experimental and Functional Morphology, Dukelská135, CZ-379 82, Třeboň, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, and Centre of the Region Haná for Biotechnological and Agricultural Research, CATRIN, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Bauer U, Müller UK, Poppinga S. Complexity and diversity of motion amplification and control strategies in motile carnivorous plant traps. Proc Biol Sci 2021; 288:20210771. [PMID: 34036802 PMCID: PMC8150269 DOI: 10.1098/rspb.2021.0771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Similar to animals, plants have evolved mechanisms for elastic energy storage and release to power and control rapid motion, yet both groups have been largely studied in isolation. This is exacerbated by the lack of consistent terminology and conceptual frameworks describing elastically powered motion in both groups. Iconic examples of fast movements can be found in carnivorous plants, which have become important models to study biomechanics, developmental processes, evolution and ecology. Trapping structures and processes vary considerably between different carnivorous plant groups. Using snap traps, suction traps and springboard-pitfall traps as examples, we illustrate how traps mix and match various mechanisms to power, trigger and actuate motions that contribute to prey capture, retention and digestion. We highlight a fundamental trade-off between energetic investment and movement control and discuss it in a functional-ecological context.
Collapse
Affiliation(s)
- Ulrike Bauer
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Płachno BJ, Strzemski M, Dresler S, Adamec L, Wojas-Krawczyk K, Sowa I, Danielewicz A, Miranda VFO. A Chemometry of Aldrovanda vesiculosa L. (Waterwheel, Droseraceae) Populations. Molecules 2020; 26:E72. [PMID: 33375725 PMCID: PMC7795913 DOI: 10.3390/molecules26010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
The genus Aldrovanda is a Palaeogene element containing a single extant species, Aldrovanda vesiculosa L. This aquatic carnivorous herb has a very wide range of distribution, natively covering four continents; however, it is a critically endangered aquatic plant species worldwide. Previous studies revealed that A. vesiculosa had an extremely low genetic variation. The main aim of the present paper is to explore, using chemometric tools, the diversity of 16 A. vesiculosa populations from various sites from four continents (Eurasia, Africa, Australia). Using chemometric data as markers for genetic diversity, we show the relationships of 16 A. vesiculosa populations from various sites, including four continents. Phytochemical markers allowed the identification of five well-supported (bootstrap > 90%) groups among the 16 populations sampled. The principal component analysis data support the idea that the strongly related African (Botswana) and Australian (Kimberley, NT, NW Australia) populations are the most distant ones, separated from the European and Asian ones. However, considering the five Australian populations sampled, three are nested within the Eurasian group. The chemometric data are correlated positively with the geographical distances between the samples, which suggests a tendency toward isolation for the most distant populations.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St. 30-387 Cracow, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Lubomír Adamec
- Department of Experimental and Functional Morphology, Institute of Botany CAS, Dukelská 135, CZ-379 01 Třeboň, Czech Republic;
| | - Kamila Wojas-Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Danielewicz
- Department of Paediatric Orthopaedics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Vitor F. O. Miranda
- Laboratory of Plant Systematics, Department of Applied Biology, Campus Jaboticabal, School of Agricultural and Veterinarian Sciences, UNESP-São Paulo State University, São Paulo CEP 14884-900, Brazil;
| |
Collapse
|