1
|
Jin Y, Du X, Jiang C, Ji W, Yang P. Disentangling sources of gene tree discordance for Hordeum species via target-enriched sequencing assays. Mol Phylogenet Evol 2024; 199:108160. [PMID: 39019201 DOI: 10.1016/j.ympev.2024.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Hordeum is an economically and evolutionarily important genus within the Triticeae tribe of the family Poaceae, and contains 33 widely distributed and diverse species which cytologically represent four subgenomes (H, Xa, Xu and I). These wild species (except Hordeum spontaneum, which is the primary gene pool of barley) are secondary or tertiary gene-pool germplasms for barley and wheat improvement, and uncovering their complicated evolutionary relationships would benefit for future breeding programs. Here, we developed a complexity-reduced pipeline via capturing genome-wide distributed fragments via two novel target-enriched assays (HorCap v1.0 and BarPlex v1.0) in conjugation with high-throughput sequencing of the enrichments. Both assays were tested for genotyping 40 species from three genera (Hordeum, Triticum, and Aegilops) containing 82 samples 67 accessions. Either of both assays worked efficiently in genotyping, while integration of both assays can significantly improve the robustness and resolution of the Hordeum phylogenetic trees. Interestingly, the incomplete lineage sorting (ILS) was inferred for the first time as the major factor causing phylogenetic discordance among the four subgenomes, whereas in New World species (carrying I genome) post-speciation introgression events were revealed. Through revising the evolutionary relationships of the Hordeum species based on an ancestral state reconstruction for the diploids and parental donor inference for the polyploids, our results raised new queries about the Hordeum phylogeny. Moreover, both newly-developed assays are applicable in genotyping and phylogenetic analysis of Hordeum and other Triticeae wild species.
Collapse
Affiliation(s)
- Yanlong Jin
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Xin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Benson CW, Sheltra MR, Huff DR. The genome of Salmacisia buchloëana, the parasitic puppet master pulling strings of sexual phenotypic monstrosities in buffalograss. G3 (BETHESDA, MD.) 2024; 14:jkad238. [PMID: 37847611 PMCID: PMC10849329 DOI: 10.1093/g3journal/jkad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
To complete its parasitic lifecycle, Salmacisia buchloëana, a biotrophic fungus, manipulates reproductive organ development, meristem determinacy, and resource allocation in its dioecious plant host, buffalograss (Bouteloua dactyloides; Poaceae). To gain insight into S. buchloëana's ability to manipulate its host, we sequenced and assembled the 20.1 Mb genome of S. buchloëana into 22 chromosome-level pseudomolecules. Phylogenetic analysis suggests that S. buchloëana is nested within the genus Tilletia and diverged from Tilletia caries and Tilletia walkeri ∼40 MYA. We find that S. buchloëana contains a novel chromosome arm with no syntenic relationship to other publicly available Tilletia genomes, and that genes on the novel arm are upregulated upon infection, suggesting that this unique chromosomal segment may have played a critical role in S. buchloëana's evolution and host specificity. Salmacisia buchloëana has one of the largest fractions of serine peptidases (1.53% of the proteome) and one of the highest GC contents (62.3%) in all classified fungi. Analysis of codon base composition indicated that GC content is controlled more by selective constraints than directional mutation, and that S. buchloëana has a unique bias for the serine codon UCG. Finally, we identify 3 inteins within the S. buchloëana genome, 2 of which are located in a gene often used in fungal taxonomy. The genomic and transcriptomic resources generated here will aid plant pathologists and breeders by providing insight into the extracellular components contributing to sex determination in dioecious grasses.
Collapse
Affiliation(s)
- Christopher W Benson
- Department of Plant Science, Pennsylvania State University, University Park, PA 16801, USA
- Intercollegiate Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA 16801, USA
| | - Matthew R Sheltra
- Department of Plant Science, Pennsylvania State University, University Park, PA 16801, USA
- Intercollegiate Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA 16801, USA
| | - David R Huff
- Department of Plant Science, Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
3
|
Yin B, Sun G, Sun D, Ren X. Phylogenetic analysis of two single-copy nuclear genes revealed origin of tetraploid barley Hordeum marinum. PLoS One 2020; 15:e0235475. [PMID: 32603381 PMCID: PMC7326175 DOI: 10.1371/journal.pone.0235475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 01/31/2023] Open
Abstract
Sea barley Hordeum marinum is an important germplasm resource. However, the origin of this tetraploid H. marinum subsp. gussoneanum is still unclear, which has caused great perplexity to the exploration and utilization of germplasm resources. We used two single-copy nuclear genes, thioredoxin-like gene (TRX) and waxy1 gene encoding granule-bound starch synthase (WAXY1) to analyze 41 accessions of Hordeum marinum. The phylogenies of different genes told different story of evolution of tetraploids of H. marinum subsp. gussoneanum. The phylogenetic trees showed that two distinct copies of sequences from both genes were detected for some accessions of the tetraploids of H. marinum subsp. gussoneanum, and diploid marinum might also contribute to the origin and evolution of the tetraploid gussoneanum. Our findings suggested that tetraploid more likely originated from the diploids of H. marinum subsp. gussoneanum and another ancestor that might be an extinct unknown diploid species. Homogenization of gene in tetraploids also occurred after polyploidization as both TRX and WAXY1 sequences in some accessions of tetraploid H. marinum subsp. gussoneanum cannot be distinguished, indicating the complicated evolution of this tetraploid.
Collapse
Affiliation(s)
- Bo Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, NS, Canada
| | - Daokun Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
4
|
Yang Y, Fan X, Wang L, Zhang HQ, Sha LN, Wang Y, Kang HY, Zeng J, Yu XF, Zhou YH. Phylogeny and maternal donors of Elytrigia Desv. sensu lato (Triticeae; Poaceae) inferred from nuclear internal-transcribed spacer and trnL-F sequences. BMC PLANT BIOLOGY 2017; 17:207. [PMID: 29157213 PMCID: PMC5697114 DOI: 10.1186/s12870-017-1163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Elytrigia Desv. is a genus with a varied array of morphology, cytology, ecology, and distribution in Triticeae. Classification and systematic position of Elytrigia remain controversial. We used nuclear internal-transcribed spacer (nrITS) sequences and chloroplast trnL-F region to study the relationships of phylogenetic and maternal genome donor of Elytrigia Desv. sensu lato. RESULTS (1) E, F, P, St, and W genomes bear close relationship with one another and are distant from H and Ns genomes. Ee and Eb are homoeologous. (2) In ESt genome species, E genome is the origin of diploid Elytrigia species with E genome, St genome is the origin of Pseudoroegneria. (3) Diploid species Et. elongata were differentiated. (4) Et. stipifolia and Et. varnensis sequences are diverse based on nrITS data. (5) Et. lolioides contains St and H genomes and belongs to Elymus s. l. (6) E genome diploid species in Elytrigia serve as maternal donors of E genome for Et. nodosa (PI547344), Et. farcta, Et. pontica, Et. pycnantha, Et. scirpea, and Et. scythica. At least two species act as maternal donor of allopolyploids (ESt and EStP genomes). CONCLUSIONS Our results suggested that Elytrigia s. l. species contain different genomes, which should be divided into different genera. However, the genomes of Elytrigia species had close relationships with one another. Diploid species were differentiated, because of introgression and different geographical sources. The results also suggested that the same species and the same genomes of different species have different maternal donor. Further study of molecular biology and cytology could facilitate the evaluation of our results of phylogenetic in a more specific and accurate way.
Collapse
Affiliation(s)
- Yan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009 Sichuan People’s Republic of China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
5
|
Hu Q, Sun G. Phylogenetic analysis of two single-copy nuclear genes revealed origin and complex relationships of polyploid species of Hordeum in Triticeae (Poaceae). Genome 2017; 60:518-529. [PMID: 28177826 DOI: 10.1139/gen-2016-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two single-copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and thioredoxin-like gene (HTL), were used to explore the phylogeny and origin of polyploid species in Hordeum. Our results were partly in accord with previous studies, but disclosed additional complexity. Both RPB2 and HTL trees confirmed the presence of Xa genome in H. capense and H. secalinum, and that H. depressum originated from H. californicum together with other American diploids, either H. intercedens or H. pusillum. American diploids solely contributed to the origin of H. depressum. The Asian diploids, either H. bogdanii or H. brevisubulatum, contributed to the formation of American polyploids except H. depressum. RPB2 and HTL sequences showed that H. roshevitzii did not contribute to the origin of American tetraploids. Our data showed a close relationship between the hexaploids H. procerum and H. parodii and the tetraploids H. brachyantherum, H. fuegianum, H. guatemalense, H. jubatum, and H. tetraploidum. The involvement of the diploid H. pusillum and the tetraploid H. jubatum in the formation of H. arizonicum was also indicated in the HTL phylogeny. Our results suggested a possible gene introgression of W- and P-genome species into the tetraploid H. jubatum and the hexaploid H. procerum.
Collapse
Affiliation(s)
- Qianni Hu
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada.,Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada.,Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| |
Collapse
|
6
|
Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley. Sci Rep 2016; 6:36122. [PMID: 27786300 PMCID: PMC5081693 DOI: 10.1038/srep36122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm.
Collapse
|
7
|
Li GR, Lang T, Yang EN, Liu C, Yang ZJ. Characterization and phylogenetic analysis of α-gliadin gene sequences reveals significant genomic divergence in Triticeae species. J Genet 2015; 93:725-31. [PMID: 25572231 DOI: 10.1007/s12041-014-0441-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the unique properties of wheat α-gliadin gene family are well characterized, little is known about the evolution and genomic divergence of α-gliadin gene family within the Triticeae. We isolated a total of 203 α-gliadin gene sequences from 11 representative diploid and polyploid Triticeae species, and found 108 sequences putatively functional. Our results indicate that α-gliadin genes may have possibly originated from wild Secale species, where the sequences contain the shortest repetitive domains and display minimum variation. A miniature inverted-repeat transposable element insertion is reported for the first time in α-gliadin gene sequence of Thinopyrum intermedium in this study, indicating that the transposable element might have contributed to the diversification of α-gliadin genes family among Triticeae genomes. The phylogenetic analyses revealed that the α-gliadin gene sequences of Dasypyrum, Australopyrum, Lophopyrum, Eremopyrum and Pseudoroengeria species have amplified several times. A search for four typical toxic epitopes for celiac disease within the Triticeae α-gliadin gene sequences showed that the α-gliadins of wild Secale, Australopyrum and Agropyron genomes lack all four epitopes, while other Triticeae species have accumulated these epitopes, suggesting that the evolution of these toxic epitopes sequences occurred during the course of speciation, domestication or polyploidization of Triticeae.
Collapse
Affiliation(s)
- Guang-Rong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, People's Republic of China.
| | | | | | | | | |
Collapse
|
8
|
Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica. Mol Genet Genomics 2015; 290:2297-312. [DOI: 10.1007/s00438-015-1076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/29/2015] [Indexed: 11/26/2022]
|
9
|
Diversity within the genus Elymus (Poaceae: Triticeae) as investigated by the analysis of the nr5S rDNA variation in species with St and H haplomes. Mol Genet Genomics 2014; 290:329-42. [PMID: 25248636 DOI: 10.1007/s00438-014-0907-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
The genus Elymus ("Ryegrass") is a repository for a range of species with a variety of haplome contents; hence the pejorative name "dustbin" genus. We have analyzed 1,059 sequences from 128 accessions representing 24 species to investigate the relationships among the StH haplomes-containing species described by Yen and Yang (Genus Elymus Beijing 5:58-362, 2013). Sequences were assigned to "unit classes" of orthologous sequences and subjected to a suite of analyses including BLAST (Basic Local Alignment Search Tool) searches, phylogenetic analysis and population genetic analysis to estimate species diversity. Our results support the genome analyses in Yen and Yang (Genus Elymus Beijing 5:58-362, 2013), i.e., genomic constitution StStHH including variants restricted to Elymus. Population genetic analysis of the 5S nrDNA sequence data revealed that the within-species variance component is roughly ±89 %; thus, we were unable to identify molecular markers capable to separate the 24 species analyzed. Separate phylogenetic analyses of the two unit classes and of all the data exhibit a trend only of the species to cluster on the phylograms. Finally, the analysis provides evidence for the multiple origins of American and Eurasian species.
Collapse
|
10
|
Liao JQ, Ross L, Fan X, Sha LN, Kang HY, Zhang HQ, Wang Y, Liu J, Wang XL, Yu XF, Yang RW, Ding CB, Zhang L, Zhou YH. Phylogeny and maternal donors of the tetraploid species with St genome (Poaceae: Triticeae) inferred from CoxII and ITS sequences. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Zimmer EA, Wen J. Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 2013; 66:539-50. [PMID: 23375140 DOI: 10.1016/j.ympev.2013.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022]
Abstract
The paper reviews the current state of low and single copy nuclear markers that have been applied successfully in plant phylogenetics to date, and discusses case studies highlighting the potential of massively parallel high throughput or next-generation sequencing (NGS) approaches for molecular phylogenetic and evolutionary investigations. The current state, prospects and challenges of specific single- or low-copy plant nuclear markers as well as phylogenomic case studies are presented and evaluated.
Collapse
Affiliation(s)
- Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | | |
Collapse
|
12
|
Zimmer EA, Wen J. Using nuclear gene data for plant phylogenetics: Progress and prospects. Mol Phylogenet Evol 2012; 65:774-85. [DOI: 10.1016/j.ympev.2012.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
13
|
Zecca G, Abbott JR, Sun WB, Spada A, Sala F, Grassi F. The timing and the mode of evolution of wild grapes (Vitis). Mol Phylogenet Evol 2011; 62:736-47. [PMID: 22138159 DOI: 10.1016/j.ympev.2011.11.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 11/04/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
Wild grapes are woody climbers, found mostly in temperate regions of the northern hemisphere, comprising the genus Vitis. Despite its importance, the evolutionary history of Vitis is still contentious. Past studies have led to conflicting hypotheses about the phylogeny, speciation events, and biogeographic history of the genus. Here we investigate the evolutionary history of Vitis using data from four chloroplast spacers (trnH-psbA, trnK-rps16, trnF-nahJ, and rpl32-trnL) and the nuclear gene RPB2-I, and we explore mechanisms that could have shaped the observed distribution of current species. Maximum likelihood and Bayesian analyses provided similar results, strongly supporting the presence of two subgenera and suggesting a species clustering within subgenus Vitis that mainly mirrors the disjunction between the Old and New World. Vitis vinifera subsp. sylvestris was found to be sister to the Asian species while three major clades were found in the American species. A network approach confirmed the main geographic groups and highlighted different chloroplast haplotype patterns between Asian and American species. Molecular dating analysis provided the time boundaries to discuss our results. Our study shows wild grape diversification to be a continuous and complex process that concerned the Tertiary as well as the Quaternary, most likely involving both geographical and climatic forces. Local variations in extent and timing of these forces were discussed based on observed differences between groups. In the context of the Tertiary-Quaternary debate, we provide evidence in favor of the "continuous hypothesis" to explain present diversity. Finally, two directions for future research are highlighted: (i) was the earliest grape American or Asian? and (ii) are all modern grape species real?
Collapse
Affiliation(s)
- Giovanni Zecca
- Botanical Garden, Department of Biology, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Wang H, Sun D, Sun G. Molecular phylogeny of diploid Hordeum species and incongruence between chloroplast and nuclear datasets. Genome 2011; 54:986-92. [PMID: 22085287 DOI: 10.1139/g11-063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phylogeny of diploid Hordeum species has been studied using both chloroplast and nuclear gene sequences. However, the studies of different nuclear datasets of Hordeum species often arrived at similar conclusions, whereas the studies of different chloroplast DNA data generally resulted in inconsistent conclusions. Although the monophyly of the genus is well supported by both morphological and molecular data, the intrageneric phylogeny is still a matter of controversy. To better understand the evolutionary history of Hordeum species, two chloroplast gene loci (trnD-trnT intergenic spacer and rps16 gene) and one nuclear marker (thioreoxin-like gene (HTL)) were used to explore the phylogeny of Hordeum species. Two obviously different types of trnD-trnT sequences were observed, with an approximately 210 base pair difference between these two types: one for American species, another for Eurasian species. The trnD-trnT data generally separated the diploid Hordeum species into Eurasian and American clades, with the exception of Hordeum marinum subsp. gussoneanum. The rps16 data also grouped most American species together and suggested that Hordeum flexuosum has a different plastid type from the remaining American species. The nuclear gene HTL data clearly divided Hordeum species into two clades: the Xu+H genome clade and the Xa+I genome clade. Within clades, H genome species were well separated from the Xu species, and the I genome species were well separated from the Xa genome species. The incongruence between chloroplast and nuclear datasets was found and discussed.
Collapse
Affiliation(s)
- Huan Wang
- Biology Department, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | | | | |
Collapse
|
15
|
Sarilar V, Marmagne A, Brabant P, Joets J, Alix K. BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. PLANT MOLECULAR BIOLOGY 2011; 77:59-75. [PMID: 21626236 DOI: 10.1007/s11103-011-9794-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/12/2011] [Indexed: 05/02/2023]
Abstract
We characterized a Brassica miniature inverted repeat transposable element (MITE) from the Stowaway superfamily, designated BraSto (Bra ssica Sto waway). BraSto copy number was assessed using real-time quantitative PCR in the two diploid species B. rapa (genome A) and B. oleracea (genome C) and the corresponding allotetraploid species B. napus (genome AC). Phylogenetic relationships among a set of 131 BraSto copies were then analyzed. BraSto appears to have been only moderately amplified in the Brassica genome and was still active recently with marks of proliferation in both diploid Brassica species, which diverged 3.75 million years ago, but also in the allotetraploid species after reuniting of the two differentiated genomes. We characterized insertion sites for low-divergence BraSto copies among the gene space of the B. rapa genome using bioinformatics approaches. For BraSto copies localized nearby or within genes, we observed frequent associations of BraSto with putative promoters and regulatory regions of genes, but exclusion from coding regions. In addition, BraSto was significantly similar to several Brassica expressed sequence tags (ESTs), including stress-induced ESTs. We also demonstrated the enrichment of BraSto sequences in binding sites for transcription factors and other regulatory elements. Our results lead to the question of a role for BraSto in the regulation of gene expression: this putative role, if further confirmed experimentally, would help to obtain a new insight into the significance of MITEs in the functional plant genome.
Collapse
Affiliation(s)
- Véronique Sarilar
- AgroParisTech/CNRS, UMR 0320/UMR 8120 Génétique Végétale INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
16
|
Ourari M, Ainouche A, Coriton O, Huteau V, Brown S, Misset MT, Ainouche M, Amirouche R. Diversity and evolution of the Hordeum murinum polyploid complex in Algeria. Genome 2011; 54:639-54. [PMID: 21848403 DOI: 10.1139/g11-032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Population diversity and evolutionary relationships in the Hordeum murinum L. polyploid complex were explored in contrasted bioclimatic conditions from Algeria. A multidisciplinary approach based on morphological, cytogenetic, and molecular data was conducted on a large population sampling. Distribution of diploids (subsp. glaucum) and tetraploids (subsp. leporinum) revealed a strong correlation with a North-South aridity gradient. Most cytotypes exhibit regular meiosis with variable irregularities in some tetraploid populations. Morphological analyses indicate no differentiation among taxa but high variability correlated with bioclimatic parameters. Two and three different nuclear sequences (gene coding for an unspliced genomic protein kinase domain) were isolated in tetraploid and hexaploid cytotypes, respectively, among which one was identical with that found in the diploid subsp. glaucum. The tetraploids (subsp. leporinum and subsp. murinum) do not exhibit additivity for 5S and 45S rDNA loci comparative with the number observed in the related diploid (subsp. glaucum). The subgenomes in the tetraploid taxa could not be differentiated using genomic in situ hybridization (GISH). Results support an allotetraploid origin for subsp. leporinum and subsp. murinum that derives from the diploid subsp. glaucum and another unidentified diploid parent. The hexaploid (subsp. leporinum) has an allohexaploid origin involving the two genomes present in the allotetraploids and another unidentified third diploid progenitor.
Collapse
Affiliation(s)
- Malika Ourari
- Université de Rennes, Campus Scientifique de Beaulieu, Rennes CEDEX, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
liao JQ, Fan X, Zhang HQ, Sha LN, Kang HY, Wang XL, Liu J, Zhou YH. Molecular phylogeny of RNA polymerase II gene reveals the relationships of tetraploid species with St genome (Triticeae: Poaceae). BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Petersen G, Aagesen L, Seberg O, Larsen IH. When is enough, enough in phylogenetics? A case in point from Hordeum (Poaceae). Cladistics 2011; 27:428-446. [DOI: 10.1111/j.1096-0031.2011.00347.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
Zhang X, Sun G. RPB2 sequences reveal a close phylogenetic relationship between tetraploid Hordelymus and diploid Hordeum species in Triticeae (Poaceae). BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Russell A, Samuel R, Klejna V, Barfuss MHJ, Rupp B, Chase MW. Reticulate evolution in diploid and tetraploid species of Polystachya (Orchidaceae) as shown by plastid DNA sequences and low-copy nuclear genes. ANNALS OF BOTANY 2010; 106:37-56. [PMID: 20525745 PMCID: PMC2889800 DOI: 10.1093/aob/mcq092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/18/2010] [Accepted: 03/29/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Here evidence for reticulation in the pantropical orchid genus Polystachya is presented, using gene trees from five nuclear and plastid DNA data sets, first among only diploid samples (homoploid hybridization) and then with the inclusion of cloned tetraploid sequences (allopolyploids). Two groups of tetraploids are compared with respect to their origins and phylogenetic relationships. METHODS Sequences from plastid regions, three low-copy nuclear genes and ITS nuclear ribosomal DNA were analysed for 56 diploid and 17 tetraploid accessions using maximum parsimony and Bayesian inference. Reticulation was inferred from incongruence between gene trees using supernetwork and consensus network analyses and from cloning and sequencing duplicated loci in tetraploids. KEY RESULTS Diploid trees from individual loci showed considerable incongruity but little reticulation signal when support from more than one gene tree was required to infer reticulation. This was coupled with generally low support in the individual gene trees. Sequencing the duplicated gene copies in tetraploids showed clearer evidence of hybrid evolution, including multiple origins of one group of tetraploids included in the study. CONCLUSIONS A combination of cloning duplicate gene copies in allotetraploids and consensus network comparison of gene trees allowed a phylogenetic framework for reticulation in Polystachya to be built. There was little evidence for homoploid hybridization, but our knowledge of the origins and relationships of three groups of allotetraploids are greatly improved by this study. One group showed evidence of multiple long-distance dispersals to achieve a pantropical distribution; another showed no evidence of multiple origins or long-distance dispersal but had greater morphological variation, consistent with hybridization between more distantly related parents.
Collapse
Affiliation(s)
- Anton Russell
- Department of Systematic and Evolutionary Botany, Vienna University, Vienna 1030, Austria.
| | | | | | | | | | | |
Collapse
|
21
|
Baum BR, Edwards T, Johnson DA. Codependence of repetitive sequence classes in genomes: phylogenetic analysis of 5S rDNA families in Hordeum (Triticeae: Poaceae). Genome 2010; 53:180-202. [PMID: 20237596 DOI: 10.1139/g09-096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To complete our study of the genus Hordeum and to elaborate a phylogeny of species based upon 5S rDNA sequences, we have cloned and sequenced PCR amplicons from seven American polyploid species to generate 164 new 5S rRNA gene sequences. These sequences were analysed along with the more than 2000 5S rDNA sequences previously generated from the majority of species in Hordeum to provide a comprehensive picture of the distribution (presence or absence) of 5S rDNA unit classes (orthologous groups) in this genus as well as insights into the phylogeny of Hordeum. Testing of substitution models for each unit class based upon the consensus sequences of all the taxa as well as for each unit class within the genus found that the general best fit was TPM3uf+G, from which a maximum-likelihood tree was calculated. A novel application of cophylogenetic analysis, where relationships among unit classes were treated as host-parasite interactions, depicted some significant pair links under tests of randomness indicative of nonrandom codivergence among several unit classes within the same taxon. The previous classification of four genomic groups is reflected in combinations of unit classes, and it is proposed that current taxa developed from ancient diploidized paleopolyploids and that some were subjected to gene loss, i.e., unit class loss. Finally, separate phylogenetic analyses performed for the tetraploid and hexaploid species were used to derive a working model describing the phylogeny of the polyploid taxa from their putative diploid ancestry.
Collapse
Affiliation(s)
- Bernard R Baum
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Neatby Building, Ottawa, ON, Canada.
| | | | | |
Collapse
|