1
|
Bashir MA, Bertamini M, Gottardini E, Grando MS, Faralli M. Olive reproductive biology: implications for yield, compatibility conundrum, and environmental constraints. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4300-4313. [PMID: 38660967 DOI: 10.1093/jxb/erae190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Olive (Olea europaea L.) is an important Mediterranean tree species with a longstanding history of cultivation, boasting a diverse array of local cultivars. While traditional olive orchards are valued for their cultural and aesthetic significance, they often face economic sustainability challenges in the modern context. The success of both traditional and newly introduced cultivars (e.g. those obtained by cross-breeding) is hindered by self-incompatibility, a prevalent issue for this species that results in low fruit set when limited genetic diversity is present. Further, biological, environmental, and agronomic factors have been shown to interlink in shaping fertilization patterns, hence impacting on the final yield. Climatic conditions during pollination, such as excessive rainfall or high temperatures, can further exacerbate the problem. In this work, we provide an overview of the various factors that trigger the phenomenon of suboptimal fruit set in olive trees. This work provides a comprehensive understanding of the interplay among these factors, shedding light on potential mechanisms and pathways that contribute to the observed outcomes in the context of self-incompatibility in olive.
Collapse
Affiliation(s)
- Muhammad Ajmal Bashir
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Massimo Bertamini
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Elena Gottardini
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Maria Stella Grando
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Michele Faralli
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| |
Collapse
|
2
|
Lubini G, Ferreira PB, Quiapim AC, Brito MS, Cossalter V, Pranchevicius MCS, Goldman MHS. Silencing of a Pectin Acetylesterase (PAE) Gene Highly Expressed in Tobacco Pistils Negatively Affects Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:329. [PMID: 36679042 PMCID: PMC9864977 DOI: 10.3390/plants12020329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Successful plant reproduction and fruit formation depend on adequate pollen and pistil development, and pollen-pistil interactions. In Nicotiana tabacum, pollen tubes grow through the intercellular spaces of pistil-specialized tissues, stigmatic secretory zone, and stylar transmitting tissue (STT). These intercellular spaces are supposed to be formed by the modulation of cell wall pectin esterification. Previously we have identified a gene preferentially expressed in pistils encoding a putative pectin acetylesterase (PAE), named NtPAE1. Here, we characterized the NtPAE1 gene and performed genome-wide and phylogenetic analyses of PAEs. We identified 30 PAE sequences in the N. tabacum genome, distributed in four clades. The expression of NtPAE1 was assessed by RT-qPCR and in situ hybridization. We confirmed NtPAE1 preferential expression in stigmas/styles and ovaries and demonstrated its high expression in the STT. Structural predictions and comparisons between NtPAE1 and functional enzymes validated its identity as a PAE. Transgenic plants were produced, overexpressing and silencing the NtPAE1 gene. Overexpressed plants displayed smaller flowers while silencing plants exhibited collapsed pollen grains, which hardly germinate. NtPAE1 silencing plants do not produce fruits, due to impaired pollen tube growth in their STTs. Thus, NtPAE1 is an essential enzyme regulating pectin modifications in flowers and, ultimately, in plant reproduction.
Collapse
Affiliation(s)
- Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Pedro Boscariol Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Andréa Carla Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Michael Santos Brito
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Viviane Cossalter
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | | | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
3
|
Rui C, Peng F, Fan Y, Zhang Y, Zhang Z, Xu N, Zhang H, Wang J, Li S, Yang T, Malik WA, Lu X, Chen X, Wang D, Chen C, Gao W, Ye W. Genome-wide expression analysis of carboxylesterase (CXE) gene family implies GBCXE49 functional responding to alkaline stress in cotton. BMC PLANT BIOLOGY 2022; 22:194. [PMID: 35413814 PMCID: PMC9004025 DOI: 10.1186/s12870-022-03579-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Carboxylesterase (CXE) is a type of hydrolase with α/β sheet hydrolase activity widely found in animals, plants and microorganisms, which plays an important role in plant growth, development and resistance to stress. RESULTS A total of 72, 74, 39, 38 CXE genes were identified in Gossypium barbadense, Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively. The gene structure and expression pattern were analyzed. The GBCXE genes were divided into 6 subgroups, and the chromosome distribution of members of the family were mapped. Analysis of promoter cis-acting elements showed that most GBCXE genes contain cis-elements related to plant hormones (GA, IAA) or abiotic stress. These 6 genes we screened out were expressed in the root, stem and leaf tissues. Combined with the heat map, GBCXE49 gene was selected for subcellular locate and confirmed that the protein was expressed in the cytoplasm. CONCLUSIONS The collinearity analysis of the CXE genes of the four cotton species in this family indicated that tandem replication played an indispensable role in the evolution of the CXE gene family. The expression patterns of GBCXE gene under different stress treatments indicated that GBCXE gene may significantly participate in the response to salt and alkaline stress through different mechanisms. Through the virus-induced gene silencing technology (VIGS), it was speculated that GBCXE49 gene was involved in the response to alkaline stress in G. barbadense.
Collapse
Affiliation(s)
- Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, 3036 Shanjuan Road, Changde, 415101, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Zhigang Zhang
- Hunan Institute of Cotton Science, 3036 Shanjuan Road, Changde, 415101, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Hong Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Shengmei Li
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China
| | - Tao Yang
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China.
| |
Collapse
|
4
|
Del Pino AM, Falcinelli B, D’Amato R, Businelli D, Benincasa P, Palmerini CA. In Vitro Oxidative Stress Threatening Maize Pollen Germination and Cytosolic Ca 2+ Can Be Mitigated by Extracts of Emmer Wheatgrass Biofortified with Selenium. PLANTS (BASEL, SWITZERLAND) 2022; 11:859. [PMID: 35406839 PMCID: PMC9003561 DOI: 10.3390/plants11070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this work, we studied the effects of in vitro oxidative stress applied by H2O2 to maize pollen germination and cytosolic Ca2+, taken as an experimental model to test the biological activity of extracts of emmer (Triticum turgidum L. spp. dicoccum (Schrank ex Shubler) Thell.) wheatgrass obtained from grains sprouted with distilled water, or salinity (50 mM) or selenium (45 mg L-1 of Na2SeO3). Wheatgrass extracts were obtained in two ways: by direct extraction in methanol, which represented the free phenolic fraction of extracts (Ef), and by residual content after alkaline digestion, which made it possible to obtain extracts with the bound fraction (Eb). Comparative tests on maize pollen were carried out by differently combining H2O2 and either wheatgrass extracts or pure phenolic acids (4-HO benzoic, caffeic, p-coumaric and salicylic). The cytosolic Ca2+ of maize pollen was influenced by either H2O2 or pure phenolic acids or Ef, but not by Eb. The negative effect of H2O2 on maize pollen germination and cytosolic Ca2+ was mitigated by Ef and, slightly, by Eb. The extent of the biological response of Ef depended on the sprouting conditions (i.e., distilled water, salinity or selenium). The extracts of Se-biofortified wheatgrass were the most effective in counteracting the oxidative stress.
Collapse
|
5
|
Kućko A, de Dios Alché J, Tranbarger TJ, Wilmowicz E. The acceleration of yellow lupine flower abscission by jasmonates is accompanied by lipid-related events in abscission zone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111173. [PMID: 35151456 DOI: 10.1016/j.plantsci.2021.111173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Yellow lupine is an economically important crop. This species has been used as a great model for abscission processes for several years due to extreme flower abortion, which takes place in the abscission zone (AZ). AZ activation involves modifications of cell walls, membranes, and cellular structure. In this paper, we applied physiological, molecular, biochemical, and instrumental methods to explore lipid-associated changes and the possible involvement of lipid-derived phytohormones - jasmonates (JAs) - in flower AZ activation. Our comprehensive analyses revealed that natural abscission is accompanied by the upregulation of peroxidase, which reflects a disruption of redox balance and/or lipids peroxidation in AZ cell membranes. Redox imbalance was confirmed by appearance of malondialdehyde. Lipid-related processes involved the specific localization and increased level and activity of lipase and LOX, enzymes associated with cell membrane rupture, and JA biosynthesis. Lipid-hydrolyzing phospholipase D, implicated previously in abscission, is also found in naturally active AZs. Observed changes are accompanied by the accumulation of jasmonates, both free jasmonic acid and its methyl ester. The JA derivative exhibited higher biological activity than the nonconjugated form. Overall, our study shed new light on the lipid and phytohormonal regulation of AZ functioning supporting a role of JAs during abscission-associated events.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008, Granada, Spain.
| | - Timothy John Tranbarger
- UMR DIADE, IRD Centre de Montpellier, Institut de Recherche pour le Développement, Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 CEDEX 5, Montpellier, France.
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland.
| |
Collapse
|
6
|
Yamamoto K, Momonoki YS. Identification and molecular characterization of propionylcholinesterase, a novel pseudocholinesterase in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1961062. [PMID: 34334124 PMCID: PMC8525928 DOI: 10.1080/15592324.2021.1961062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Cholinesterase is consisting of acetylcholinesterase (AChE) and pseudocholinesterase in vertebrates and invertebrates. AChE gene has been identified in several plant species, while pseudocholinesterase gene has not yet been found in any plant species. In this study, we report that the AChE gene paralog encodes propionylcholinesterase (PChE), a pseudocholinesterase in rice. PChE was found to be located adjacent to AChE (Os07g0586200) on rice chromosome 7 and designated as Os07g0586100. Phylogenetic tree analysis showed a close relationship between rice AChE and PChE. PChE-overexpressing rice had higher hydrolytic activity toward propionylthiocholine than acetylthiocholine and showed extremely low activity against butyrylthiocholine. Therefore, the PChE gene product was characterized as a propionylcholinesterase, a pseudocholinesterase. The rice PChE displayed lower sensitivity to the cholinesterase inhibitor, neostigmine bromide, than electric eel, maize, and rice AChEs. The recombinant PChE functions as a 171 kDa homotetramer. PChE was expressed during the later developmental stage, and it was found be localized in the extracellular spaces of the rice leaf tissue. These results suggest that the rice plant possesses PChE, which functions in the extracellular spaces at a later developmental stage. To the best of our knowledge, this study provides the first direct evidence and molecular characterization of PChE in plants.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | |
Collapse
|
7
|
Del Pino AM, Regni L, D’Amato R, Di Michele A, Proietti P, Palmerini CA. Persistence of the Effects of Se-Fertilization in Olive Trees over Time, Monitored with the Cytosolic Ca 2+ and with the Germination of Pollen. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112290. [PMID: 34834652 PMCID: PMC8624298 DOI: 10.3390/plants10112290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
Selenium (Se) is an important micronutrient for living organisms, since it is involved in several physiological and metabolic processes. Biofortification with Se increases the nutritional and qualitative values of foods in Se-deficient regions and increases tolerance to oxidative stress in olive trees. Many studies have shown that Se, in addition to improving the qualitative and nutritional properties of EVO oil, also improves the plant's response to abiotic stress. This study addressed this issue by monitoring the effects of Se on cytosolic Ca2+ and on the germination of olive pollen grains in oxidative stress. The olive trees subjected to treatment with Na-selenate in the field produced pollen with a Se content 6-8 times higher than the controls, even after 20 months from the treatment. Moreover, part of the micronutrient was organic in selenium methionine. The higher selenium content did not produce toxic effects in the pollen, rather it antagonized the undesirable effects of oxidative stress in the parameters under study. The persistence of the beneficial effects of selenium observed over time in pollens, in addition to bringing out an undisputed adaptability of olive trees to the micronutrient, suggested the opportunity to reduce the number of treatments in the field.
Collapse
Affiliation(s)
- Alberto Marco Del Pino
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (A.M.D.P.); (R.D.); (C.A.P.)
| | - Luca Regni
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (A.M.D.P.); (R.D.); (C.A.P.)
- Correspondence: (L.R.); (P.P.)
| | - Roberto D’Amato
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (A.M.D.P.); (R.D.); (C.A.P.)
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Primo Proietti
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (A.M.D.P.); (R.D.); (C.A.P.)
- Correspondence: (L.R.); (P.P.)
| | - Carlo Alberto Palmerini
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (A.M.D.P.); (R.D.); (C.A.P.)
| |
Collapse
|
8
|
Lipolytic Activity of a Carboxylesterase from Bumblebee ( Bombus ignitus) Venom. Toxins (Basel) 2021; 13:toxins13040239. [PMID: 33810599 PMCID: PMC8065460 DOI: 10.3390/toxins13040239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Bee venom is a complex mixture composed of peptides, proteins with enzymatic properties, and low-molecular-weight compounds. Although the carboxylesterase in bee venom has been identified as an allergen, the enzyme's role as a venom component has not been previously elucidated. Here, we show the lipolytic activity of a bumblebee (Bombus ignitus) venom carboxylesterase (BivCaE). The presence of BivCaE in the venom secreted by B. ignitus worker bees was confirmed using an anti-BivCaE antibody raised against a recombinant BivCaE protein produced in baculovirus-infected insect cells. The enzymatic activity of the recombinant BivCaE protein was optimal at 40 °C and pH 8.5. Recombinant BivCaE protein degrades triglycerides and exhibits high lipolytic activity toward long-chain triglycerides, defining the role of BivCaE as a lipolytic agent. Bee venom phospholipase A2 binds to mammalian cells and induces apoptosis, whereas BivCaE does not affect mammalian cells. Collectively, our data demonstrate that BivCaE functions as a lipolytic agent in bee venom, suggesting that BivCaE will be involved in distributing the venom via degradation of blood triglycerides.
Collapse
|
9
|
Lu JY, Xiong SX, Yin W, Teng XD, Lou Y, Zhu J, Zhang C, Gu JN, Wilson ZA, Yang ZN. MS1, a direct target of MS188, regulates the expression of key sporophytic pollen coat protein genes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4877-4889. [PMID: 32374882 PMCID: PMC7410184 DOI: 10.1093/jxb/eraa219] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 05/04/2023]
Abstract
Sporophytic pollen coat proteins (sPCPs) derived from the anther tapetum are deposited into pollen wall cavities and function in pollen-stigma interactions, pollen hydration, and environmental protection. In Arabidopsis, 13 highly abundant proteins have been identified in pollen coat, including seven major glycine-rich proteins GRP14, 16, 17, 18, 19, 20, and GRP-oleosin; two caleosin-related family proteins (AT1G23240 and AT1G23250); three lipase proteins EXL4, EXL5 and EXL6, and ATA27/BGLU20. Here, we show that GRP14, 17, 18, 19, and EXL4 and EXL6 fused with green fluorescent protein (GFP) are translated in the tapetum and then accumulate in the anther locule following tapetum degeneration. The expression of these sPCPs is dependent on two essential tapetum transcription factors, MALE STERILE188 (MS188) and MALE STERILITY 1 (MS1). The majority of sPCP genes are up-regulated within 30 h after MS1 induction and could be restored by MS1 expression driven by the MS188 promoter in ms188, indicating that MS1 is sufficient to activate their expression; however, additional MS1 downstream factors appear to be required for high-level sPCP expression. Our ChIP, in vivo transactivation assay, and EMSA data indicate that MS188 directly activates MS1. Together, these results reveal a regulatory cascade whereby outer pollen wall formation is regulated by MS188 followed by synthesis of sPCPs controlled by MS1.
Collapse
Affiliation(s)
- Jie-Yang Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuang-Xi Xiong
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenzhe Yin
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- Correspondence: or
| | - Xiao-Dong Teng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yue Lou
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Zhu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Cheng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jing-Nan Gu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- Correspondence: or
| | - Zhong-Nan Yang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
- Correspondence: or
| |
Collapse
|
10
|
Hernández ML, Lima-Cabello E, Alché JDD, Martínez-Rivas JM, Castro AJ. Lipid Composition and Associated Gene Expression Patterns during Pollen Germination and Pollen Tube Growth in Olive (Olea europaea L.). PLANT & CELL PHYSIOLOGY 2020; 61:1348-1364. [PMID: 32384163 PMCID: PMC7377348 DOI: 10.1093/pcp/pcaa063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 05/23/2023]
Abstract
Pollen lipids are essential for sexual reproduction, but our current knowledge regarding lipid dynamics in growing pollen tubes is still very scarce. Here, we report unique lipid composition and associated gene expression patterns during olive pollen germination. Up to 376 genes involved in the biosynthesis of all lipid classes, except suberin, cutin and lipopolysaccharides, are expressed in olive pollen. The fatty acid profile of olive pollen is markedly different compared with other plant organs. Triacylglycerol (TAG), containing mostly C12-C16 saturated fatty acids, constitutes the bulk of olive pollen lipids. These compounds are partially mobilized, and the released fatty acids enter the β-oxidation pathway to yield acetyl-CoA, which is converted into sugars through the glyoxylate cycle during the course of pollen germination. Our data suggest that fatty acids are synthesized de novo and incorporated into glycerolipids by the 'eukaryotic pathway' in elongating pollen tubes. Phosphatidic acid is synthesized de novo in the endomembrane system during pollen germination and seems to have a central role in pollen tube lipid metabolism. The coordinated action of fatty acid desaturases FAD2-3 and FAD3B might explain the increase in linoleic and alpha-linolenic acids observed in germinating pollen. Continuous synthesis of TAG by the action of diacylglycerol acyltransferase 1 (DGAT1) enzyme, but not phosphoplipid:diacylglycerol acyltransferase (PDAT), also seems plausible. All these data allow for a better understanding of lipid metabolism during the olive reproductive process, which can impact, in the future, on the increase in olive fruit yield and, therefore, olive oil production.
Collapse
Affiliation(s)
- M Luisa Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Seville 41013, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012, Spain
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| | - Juan de D Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| | - José M Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Seville 41013, Spain
| | - Antonio J Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| |
Collapse
|
11
|
Zienkiewicz K, Zienkiewicz A. Degradation of Lipid Droplets in Plants and Algae-Right Time, Many Paths, One Goal. FRONTIERS IN PLANT SCIENCE 2020; 11:579019. [PMID: 33014002 PMCID: PMC7509404 DOI: 10.3389/fpls.2020.579019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of cellular carbon and energy. These TAGs are packed into specialized organelles called lipid droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human. Recent data suggest that rather than being simple storage organelles, LDs are very dynamic structures at the center of cellular metabolism. This is also true in plants and algae, where LDs have been implicated in many processes including energy supply; membrane structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has been paid to metabolism and function of these organelles in recent years. This review summarizes the most recent advances on LDs degradation as a key process for TAGs release. While the initial knowledge on this process came from studies in oilseeds, the findings of the last decade revealed high complexity and specific mechanisms of LDs degradation in plants and algae. This includes identification of numerous novel proteins associated with LDs as well as a prominent role for autophagy in this process. This review outlines, systemizes, and discusses the most current data on LDs catabolism in plants and algae.
Collapse
|
12
|
Cao X, Duan W, Wei C, Chen K, Grierson D, Zhang B. Genome-Wide Identification and Functional Analysis of Carboxylesterase and Methylesterase Gene Families in Peach ( Prunus persica L. Batsch). FRONTIERS IN PLANT SCIENCE 2019; 10:1511. [PMID: 31824538 PMCID: PMC6884059 DOI: 10.3389/fpls.2019.01511] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/30/2019] [Indexed: 05/24/2023]
Abstract
Carboxylesterases (CXE) and methylesterases (MES) are hydrolytic enzymes that act on carboxylic esters and are involved in plant metabolic processes and defense responses. A few functions of plant CXE and MES genes have been identified but very little information is available about the role of most members. We made a comprehensive study of this gene family in a commercially important species, peach (Prunus persica L. Batsch). A total of 33 peach CXE genes and 18 MES genes were identified and shown to be distributed unevenly between the chromosomes. Based on phylogenetic analysis, CXEs and MESs clustered into two different branches. Comparison of the positions of intron and differences in motifs revealed the evolutionary relationships between CXE and MES genes. RNA-seq revealed differential expression patterns of CXE/MESs in peach flower, leaf, and ripening fruit and in response to methyl jasmonate (MeJA) and ultraviolet B treatment. Transcript levels of candidate genes were verified by real-time quantitative PCR. Heterologous expression in Escherichia coli identified three CXEs that were involved in the hydrolysis of volatile esters in vitro. Furthermore, two recombinant MES proteins were identified that could hydrolyze MeJA and methyl salicylate. Our results provide an important resource for the identification of functional CXE and MES genes involved in the catabolism of volatile esters, responses to biotic and abiotic stresses and activation of signaling molecules such as MeJA and methyl salicylate.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Wenyi Duan
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Don Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Selenium maintains cytosolic Ca 2+ homeostasis and preserves germination rates of maize pollen under H 2O 2-induced oxidative stress. Sci Rep 2019; 9:13502. [PMID: 31534157 PMCID: PMC6751180 DOI: 10.1038/s41598-019-49760-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Selenium (Se) displays antioxidant properties that can be exploited, in plants, to counteract abiotic stresses caused by overly-produced reactive oxygen species (ROS). Here, we show that fertigation of maize crops with sodium selenate effectively protects pollen against oxidative stress. Pollen isolated from Se-treated plants (Se1) and untreated controls (Se0) was incubated in vitro with H2O2 to produce oxidative challenge. Given the impact of ROS on Ca2+ homeostasis and Ca2+-dependent signaling, cytosolic Ca2+ was measured to monitor cellular perturbations. We found that H2O2 disrupted Ca2+ homeostasis in Se0 pollen only, while Se1 samples were preserved. The same trend was observed when Se0 samples were treated with sodium selenate or Se-methionine, which recapitulated in vitro the protective capacity of Se-fertigation. Furthermore, we found that germination rates were much better retained in Se1 as compared to Se0 (46% vs 8%, respectively) after exposure to 20 mM H2O2. The same was observed with Se0 pollen treated with Se-methionine, which is the organic form of Se into which most fertigated sodium selenate converts in the plant. These results, together, show a close correlation between ROS, Ca2+ homeostasis and pollen fertility, and provide strong evidence that Se-fertigation is an excellent approach to preserve or enhance agricultural productivity.
Collapse
|
14
|
Del Pino AM, Regni L, D’Amato R, Tedeschini E, Businelli D, Proietti P, Palmerini CA. Selenium-Enriched Pollen Grains of Olea europaea L.: Ca 2+ Signaling and Germination Under Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1611. [PMID: 31921256 PMCID: PMC6917658 DOI: 10.3389/fpls.2019.01611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/15/2019] [Indexed: 05/07/2023]
Abstract
Selenium (Se) shows antioxidant properties that can be exploited in plants to combat abiotic stresses caused by reactive oxygen species produced in excess (ROS). Here, we show that the Se-fertilization of olive trees with sodium selenate effectively protects the pollen from oxidative stress. Pollen isolated from plants treated with Se or from untreated controls was incubated in vitro with H2O2 to produce an oxidative challenge. Given the impact of ROS on Ca2+ homeostasis and Ca2+-dependent signaling, cytosolic Ca2+ was measured to monitor cellular perturbations. We found that H2O2 interrupted Ca2+ homeostasis only in untreated pollen, while in samples treated in vitro with sodium selenate or selenium methionine, Ca2+ homeostasis was preserved. Furthermore, germination rates were considerably better maintained in Se-fertilized pollen compared to non-fertilized pollen (30% vs. 15%, respectively) after exposure to 1 mM H2O2. The same was observed with pollen treated in vitro with Se-methionine, which is the organic form of Se, in which part of the fertigated sodium selenate is converted in the plant. Combined, our results show a close correlation between ROS, Ca2+ homeostasis, and pollen fertility and provide clear evidence that Se-fertilization is a potential approach to preserve or improve agricultural productivity.
Collapse
Affiliation(s)
| | - Luca Regni
- *Correspondence: Luca Regni, ; Primo Proietti,
| | | | | | | | | | | |
Collapse
|
15
|
Winiarczyk K, Gębura J. Activity of selected hydrolytic enzymes in Allium sativum L. anthers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:37-42. [PMID: 26901781 DOI: 10.1016/j.plaphy.2016.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant.
Collapse
Affiliation(s)
- Krystyna Winiarczyk
- Department of Plant Anatomy and Cytology, Maria Curie - Skłodowska University, Akademicka 19, 20033 Lublin, Poland.
| | - Joanna Gębura
- Department of Plant Anatomy and Cytology, Maria Curie - Skłodowska University, Akademicka 19, 20033 Lublin, Poland
| |
Collapse
|
16
|
Roshchina VV. New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:25-77. [PMID: 26589213 DOI: 10.1007/978-3-319-20215-0_2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of relations between all organisms in biocenosis-from microorganisms to plant and animals. This phenomenon, significant for chemosignaling and cellular endocrinology, has been important in human health and the ability to cause disease or immunity, because the "living environment" influences every organism in a biocenosis relationship (microorganism-microorganism, microorganism-plant, microorganism-animal, plant-animal, plant-plant and animal-animal). Non-nervous functions of neurotransmitters (rather "biomediators" on a cellular level) are considered in this review and ample consideration is given to similarities and differences that unite, as well as distinguish, taxonomical kingdoms.
Collapse
Affiliation(s)
- Victoria V Roshchina
- Laboratory of Microspectral Analysis of Cells and Cellular Systems, Institute of Cell Biophysics RAS, Institutskaya Str., 3, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
17
|
Iaria D, Chiappetta A, Muzzalupo I. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube. ScientificWorldJournal 2016; 2016:4305252. [PMID: 26998509 PMCID: PMC4779530 DOI: 10.1155/2016/4305252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/17/2016] [Accepted: 01/20/2016] [Indexed: 11/17/2022] Open
Abstract
In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.
Collapse
Affiliation(s)
- Domenico Iaria
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (OLI), 87036 Rende, Italy
| | - Adriana Chiappetta
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra, Ponte Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Innocenzo Muzzalupo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (OLI), 87036 Rende, Italy
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Polifunzionale, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
18
|
Rejón JD, Delalande F, Schaeffer-Reiss C, Alché JDD, Rodríguez-García MI, Van Dorsselaer A, Castro AJ. The Pollen Coat Proteome: At the Cutting Edge of Plant Reproduction. Proteomes 2016; 4:E5. [PMID: 28248215 PMCID: PMC5217362 DOI: 10.3390/proteomes4010005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/09/2023] Open
Abstract
The tapetum is a single layer of secretory cells which encloses the anther locule and sustains pollen development and maturation. Upon apoptosis, the remnants of the tapetal cells, consisting mostly of lipids and proteins, fill the pits of the sculpted exine to form the bulk of the pollen coat. This extracellular matrix forms an impermeable barrier that protects the male gametophyte from water loss and UV light. It also aids pollen adhesion and hydration and retains small signaling compounds involved in pollen-stigma communication. In this study, we have updated the list of the pollen coat's protein components and also discussed their functions in the context of sexual reproduction.
Collapse
Affiliation(s)
- Juan David Rejón
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - François Delalande
- Bio-Organic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
- IPHC, Centre National de la Recherche Scientifique (CNRS), UMR7178, 67087 Strasbourg, France.
| | - Christine Schaeffer-Reiss
- Bio-Organic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
- IPHC, Centre National de la Recherche Scientifique (CNRS), UMR7178, 67087 Strasbourg, France.
| | - Juan de Dios Alché
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - María Isabel Rodríguez-García
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Alain Van Dorsselaer
- Bio-Organic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
- IPHC, Centre National de la Recherche Scientifique (CNRS), UMR7178, 67087 Strasbourg, France.
| | - Antonio Jesús Castro
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
19
|
Petrić M, Subotić A, Jevremović S, Trifunović-Momčilov M, Tadić V, Grujić M, Vujčić Z. Esterase and peroxidase isoforms in different stages of morphogenesis in Fritillaria meleagris L. in bulb-scale culture. C R Biol 2015; 338:793-802. [PMID: 26545851 DOI: 10.1016/j.crvi.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/24/2022]
Abstract
Morphogenesis in vitro is a complex and still poorly defined process. We investigated esterase and peroxidase isoforms detected in bulb scale, during Fritillaria meleagris morphogenesis. Bulbs were grown either at 4 °C or on a medium with an increased concentration of sucrose (4.5%) for 30 days. After these pre-treatments, the bulb scales were further grown on nutrient media that contained different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KIN) or thidiazuron (TDZ). Regeneration of somatic embryos and bulblets occurred at the same explant. The highest numbers of somatic embryos and bulblets were regenerated on the medium containing 2,4-D and KIN (1mg/L each), while morphogenesis was most successful at a TDZ concentration between 0.5 and 1mg/L. Monitoring of esterases and peroxidases was performed by growing bulb scales on a medium enriched with 2,4-D and KIN or TDZ (1mg/L), and the number and activity of isoforms were followed every 7 days for 4 weeks. In control explants, six isoforms of esterase were observed. Three isoforms of peroxidase were not detected in the control bulb scale, which has not begun its morphogenesis process.
Collapse
Affiliation(s)
- Marija Petrić
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia.
| | - Angelina Subotić
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Slađana Jevremović
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Milana Trifunović-Momčilov
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Vojin Tadić
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Marica Grujić
- Department for Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Zoran Vujčić
- Department for Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Zienkiewicz A, Zienkiewicz K, Rejón JD, de Dios Alché J, Castro AJ, Rodríguez-García MI. Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:103-15. [PMID: 24170742 PMCID: PMC3883284 DOI: 10.1093/jxb/ert355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The major seed storage reserves in oilseeds are accumulated in protein bodies and oil bodies, and serve as an energy, carbon, and nitrogen source during germination. Here, the spatio-temporal relationships between protein bodies and several key enzymes (phospholipase A, lipase, and lipoxygenase) involved in storage lipid mobilization in cotyledon cells was analysed during in vitro seed germination. Enzyme activities were assayed in-gel and their cellular localization were determined using microscopy techniques. At seed maturity, phospholipase A and triacylglycerol lipase activities were found exclusively in protein bodies. However, after seed imbibition, these activities were shifted to the cytoplasm and the surface of the oil bodies. The activity of neutral lipases was detected by using α-naphthyl palmitate and it was associated mainly with protein bodies during the whole course of germination. This pattern of distribution was highly similar to the localization of neutral lipids, which progressively appeared in protein bodies. Lipoxygenase activity was found in both the protein bodies and on the surface of the oil bodies during the initial phase of seed germination. The association of lipoxygenase with oil bodies was temporally correlated with the appearance of phospholipase A and lipase activities on the surface of oil bodies. It is concluded that protein bodies not only serve as simple storage structures, but are also dynamic and multifunctional organelles directly involved in storage lipid mobilization during olive seed germination.
Collapse
Affiliation(s)
- Agnieszka Zienkiewicz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 87 - 100 Toruń, Poland
| | - Krzysztof Zienkiewicz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Department of Cell Biology, Nicolaus Copernicus University, 87 - 100 Toruń, Poland
| | - Juan David Rejón
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan de Dios Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Antonio Jesús Castro
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María Isabel Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
21
|
Zienkiewicz A, Zienkiewicz K, Rejón JD, Rodríguez-García MI, Castro AJ. New insights into the early steps of oil body mobilization during pollen germination. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:293-302. [PMID: 23132905 PMCID: PMC3528035 DOI: 10.1093/jxb/ers332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In some plants, pollen grains accumulate storage lipids that serve as energy supply during germination. Here, three enzymes involved in early steps of oil body mobilization in the male gametophyte were functionally characterized for the first time. The effect of extracellular sugars on pollen performance and oil body dynamics was also analysed. Olive pollen oil bodies showed phospholipase A, lipase, and lipoxygenase activities on their surface. Enzyme activity levels increased during germination with a maximum after 3h. Removal of extracellular sugars from the germination medium did not affect pollen performance but increased enzyme activity rates and sped up oil body mobilization. Inhibitors seriously hampered pollen germination and pollen tube growth, leading to a characteristic accumulation of oil bodies in the germinative aperture. It can be concluded that storage lipids are sufficient for proper olive pollen germination. A lipase and a lipoxygenase are likely involved in oil body mobilization. Extracellular sugars may modulate their function, while a phospholipase A may promote their access to the storage lipids.
Collapse
Affiliation(s)
- Agnieszka Zienkiewicz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- Department of Cell Biology, Nicolaus Copernicus University, 87–100 Toruń, Poland
| | - Krzysztof Zienkiewicz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- Department of Physiology and Molecular Biology of Plants, Nicolaus Copernicus University, 87–100 Toruń, Poland
| | - Juan David Rejón
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - María Isabel Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Antonio Jesús Castro
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|