1
|
Beveridge FC, Kalaipandian S, Yang C, Adkins SW. Fruit Biology of Coconut ( Cocos nucifera L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:3293. [PMID: 36501334 PMCID: PMC9738799 DOI: 10.3390/plants11233293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Coconut (Cocos nucifera L.) is an important perennial crop adapted to a wide range of habitats. Although global coconut demand has increased sharply over the past few years, its production has been decreasing due to palm senility, as well as abiotic and biotic stresses. In fact, replanting efforts are impeded due to the lack of good quality seedlings. In vitro technologies have a great potential; however, their applications may take time to reach a commercial level. Therefore, traditional seed propagation is still critical to help meet the rising demand and its practice needs to be improved. To achieve an improved propagation via seeds, it is important to understand coconut fruit biology and its related issues. This review aims to provide a comprehensive summary of the existing knowledge on coconut fruit morpho-anatomy, germination biology, seed dispersal, distribution, fruit longevity and storage. This will help to identify gaps where future research efforts should be directed to improve traditional seed propagation.
Collapse
|
2
|
Wang S, Xiao Y, Zhou ZW, Yuan J, Guo H, Yang Z, Yang J, Sun P, Sun L, Deng Y, Xie WZ, Song JM, Qamar MTU, Xia W, Liu R, Gong S, Wang Y, Wang F, Liu X, Fernie AR, Wang X, Fan H, Chen LL, Luo J. High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biol 2021; 22:304. [PMID: 34736486 PMCID: PMC8567702 DOI: 10.1186/s13059-021-02522-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coconut is an important tropical oil and fruit crop whose evolutionary position renders it a fantastic species for the investigation of the evolution of monocot chromosomes and the subsequent differentiation of ancient plants. RESULTS Here, we report the assembly and annotation of reference-grade genomes of Cn. tall and Cn. dwarf, whose genome sizes are 2.40 Gb and 2.39 Gb, respectively. The comparative analysis reveals that the two coconut subspecies diverge about 2-8 Mya while the conserved Arecaceae-specific whole-genome duplication (ω WGD) occurs approximately 47-53 Mya. It additionally allows us to reconstruct the ancestral karyotypes of the ten ancient monocot chromosomes and the evolutionary trajectories of the 16 modern coconut chromosomes. Fiber synthesis genes in Cn. tall, related to lignin and cellulose synthesis, are found at a higher copy number and expression level than dwarf coconuts. Integrated multi-omics analysis reveals that the difference in coconut plant height is the result of altered gibberellin metabolism, with both the GA20ox copy number and a single-nucleotide change in the promoter together leading to the difference in plant height between Cn. tall and Cn. dwarf. CONCLUSION We provide high-quality coconut genomes and reveal the genetic basis of trait differences between two coconuts through multi-omics analysis. We also reveal that the selection of plant height has been targeted for the same gene for millions of years, not only in natural selection of ancient plant as illustrated in coconut, but also for artificial selection in cultivated crops such as rice and maize.
Collapse
Affiliation(s)
- Shouchuang Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yong Xiao
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Zhi-Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Guo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Zhuang Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Pengchuan Sun
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Lisong Sun
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yuan Deng
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Wen-Zhao Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wei Xia
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Rui Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Shufang Gong
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Yong Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Fuyou Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Xiyin Wang
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.
| | - Haikuo Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China.
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
3
|
Yang Y, Bocs S, Fan H, Armero A, Baudouin L, Xu P, Xu J, This D, Hamelin C, Iqbal A, Qadri R, Zhou L, Li J, Wu Y, Ma Z, Issali AE, Rivallan R, Liu N, Xia W, Peng M, Xiao Y. Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance. Commun Biol 2021; 4:105. [PMID: 33483627 PMCID: PMC7822834 DOI: 10.1038/s42003-020-01593-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Coconut (Cocos nucifera) is the emblematic palm of tropical coastal areas all around the globe. It provides vital resources to millions of farmers. In an effort to better understand its evolutionary history and to develop genomic tools for its improvement, a sequence draft was recently released. Here, we present a dense linkage map (8402 SNPs) aiming to assemble the large genome of coconut (2.42 Gbp, 2n = 32) into 16 pseudomolecules. As a result, 47% of the sequences (representing 77% of the genes) were assigned to 16 linkage groups and ordered. We observed segregation distortion in chromosome Cn15, which is a signature of strong selection among pollen grains, favouring the maternal allele. Comparing our results with the genome of the oil palm Elaeis guineensis allowed us to identify major events in the evolutionary history of palms. We find that coconut underwent a massive transposable element invasion in the last million years, which could be related to the fluctuations of sea level during the glaciations at Pleistocene that would have triggered a population bottleneck. Finally, to better understand the facultative halophyte trait of coconut, we conducted an RNA-seq experiment on leaves to identify key players of signaling pathways involved in salt stress response. Altogether, our findings represent a valuable resource for the coconut breeding community.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398, Montpellier, France
| | - Haikuo Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Alix Armero
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Luc Baudouin
- CIRAD, UMR AGAP, F-34398, Montpellier, France.
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France.
| | - Pengwei Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Junyang Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Dominique This
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Chantal Hamelin
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398, Montpellier, France
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Rashad Qadri
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Lixia Zhou
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Zilong Ma
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, P. R. China
| | - Auguste Emmanuel Issali
- Station Cocotier Marc Delorme, Centre National De Recherche Agronomique (CNRA)07 B.P. 13, Port Bouet, Côte d'Ivoire
| | - Ronan Rivallan
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Na Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Wei Xia
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, P. R. China.
| | - Yong Xiao
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
| |
Collapse
|
4
|
Giuliani C, Pieraccini G, Santilli C, Tani C, Bottoni M, Schiff S, Fico G, Papini A, Falsini S. Anatomical Investigation and GC/MS Analysis of 'Coco de Mer', Lodoicea maldivica (Arecaceae). Chem Biodivers 2020; 17:e2000707. [PMID: 33025751 DOI: 10.1002/cbdv.202000707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/02/2020] [Indexed: 11/10/2022]
Abstract
Lodoicea maldivica (J.F.Gmel.) Pers. (Arecaceae), 'Coco de Mer', is a palm, growing as endemic in the Seychelles islands. Its fruit weighs up to 20 kg and is characterized by a fleshy and fibrous envelope surrounding the nutlike portion. The present work combines a morpho-anatomical and a phytochemical analysis of the fruit exocarp and mesocarp. The exocarp is composed by a layer of palisade cells. The mesocarp is characterized by vascular bundles and by sclereids. In the aerenchyma, the internal zone of the mesocarp, cells aggregates were positive to phenols, while idioblasts were positive to terpenes. We performed a GC/MS analysis with a semi-quantitative relative amount calculation of the recorded compounds. The GC/MS essential oil profile revealed the dominance of acyclic sesquiterpenoids (53.95 %), followed by bicyclic sesquiterpenoids (31.69 %), monoterpenes (11.89 %) and monocyclic sesquiterpenoids (2.44 %). The terpenes detected in higher amounts, β-caryophyllene and bicyclogermacrene, are known for activity against insect larvae, but have been proposed as antiviral candidates against SARS-CoV-2. The third compound in amount, aromadendrene, is active against bacteria and, again, known to possess insecticidal properties.
Collapse
Affiliation(s)
- Claudia Giuliani
- Dipartimento di Scienze Farmaceutiche - DISFARM, Università di Milan, Via Mangiagalli 25, 20133, Milano, Italy.,Orto Botanico hirardi, Dipartimento di Scienze Farmaceutiche - DISFARM, Università di Milano, Via Religione 25, 25088, Toscolano Maderno, Italy
| | - Giuseppe Pieraccini
- Centro di servizi di Spettrometria di Massa, Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139, Firenze, Italy
| | - Carolina Santilli
- Dipartimento di Biologia, Università di Firenze, Via Micheli 3, 50121, Firenze, Italy
| | - Corrado Tani
- Dipartimento di Biologia, Università di Firenze, Via Micheli 3, 50121, Firenze, Italy
| | - Martina Bottoni
- Dipartimento di Scienze Farmaceutiche - DISFARM, Università di Milan, Via Mangiagalli 25, 20133, Milano, Italy.,Orto Botanico hirardi, Dipartimento di Scienze Farmaceutiche - DISFARM, Università di Milano, Via Religione 25, 25088, Toscolano Maderno, Italy
| | - Silvia Schiff
- Dipartimento di Biologia, Università di Firenze, Via Micheli 3, 50121, Firenze, Italy
| | - Gelsomina Fico
- Dipartimento di Scienze Farmaceutiche - DISFARM, Università di Milan, Via Mangiagalli 25, 20133, Milano, Italy.,Orto Botanico hirardi, Dipartimento di Scienze Farmaceutiche - DISFARM, Università di Milano, Via Religione 25, 25088, Toscolano Maderno, Italy
| | - Alessio Papini
- Dipartimento di Biologia, Università di Firenze, Via Micheli 3, 50121, Firenze, Italy.,CSET Centro Studi Erbario Tropicale, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy
| | - Sara Falsini
- Dipartimento di Biologia, Università di Firenze, Via Micheli 3, 50121, Firenze, Italy
| |
Collapse
|
5
|
Kumar Rai P, Singh JS. Invasive alien plant species: Their impact on environment, ecosystem services and human health. ECOLOGICAL INDICATORS 2020; 111:106020. [PMID: 32372880 PMCID: PMC7194640 DOI: 10.1016/j.ecolind.2019.106020] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/03/2019] [Accepted: 12/15/2019] [Indexed: 05/18/2023]
Abstract
Ecological perturbations caused by biotic invasion have been identified as a growing threat to global sustainability. Invasive alien plants species (IAPS) are considered to be one of the major drivers of biodiversity loss and thereby altering the ecosystem services and socio-economic conditions through different mechanisms. Although the ecological impacts of IAPS are well documented, there is a dearth of studies regarding their economic quantification, livelihood considerations, biotechnological prospects (phytoremediation, bioenergy, phyto-synthesis of nanoparticles, biomedical, industrial applications etc.) and human health risk assessments of IAPS. In this context, the current panoramic review aimed to investigate the environmental, socio-ecological and health risks posed by IAPS as well as the compounded impact of IAPS with habitat fragmentation, climate and land use changes. To this end, the need of an integrated trans-disciplinary research is emphasized for the sustainable management of IAPS. The management prospects can be further strengthened through their linkage with geo-spatial technologies (remote sensing and GIS) by mapping and monitoring the IAPS spread. Further, the horizon of IAPS management is expanded to ecological indicator perspectives of IAPS, biosecurity, and risk assessment protocols with critical discussion. Moreover, positive as well as negative implications of the IAPS on environment, health, ecosystem services and socio-economy (livelihood) are listed so that a judicious policy framework could be developed for the IAPS management in order to mitigate the human health implications.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-technologies and Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (B.H.U.), Varanasi, 221005, India
| |
Collapse
|
6
|
Strona G. A spatially explicit model to investigate how dispersal/colonization tradeoffs between short and long distance movement strategies affect species ranges. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2014.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|