1
|
Demetrio GR, Seixas L, Coelho FDF. Flower Position and Clonal Integration Drive Intra-Individual Floral Trait Variation in Water-Hyacinth ( Eichhornia crassipes, Pontederiaceae). BIOLOGY 2025; 14:114. [PMID: 40001882 PMCID: PMC11852060 DOI: 10.3390/biology14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Intra-individual variation in floral traits is linked to plant fitness, playing a central role in sexual selection. This variation can arise from architectural constraints, such as flower position on the inflorescence axis, and from environmental factors. In relation to the environmental influences on floral traits, the most common causes of variation are linked to the presence of pollinators, to plant resource acquisition strategies and to the availability of local resource pools. We investigated how clonal integration and resource depletion through defoliation affect floral trait stability in Eichhornia crassipes, testing whether clonal integration buffer floral traits against resource limitations. Using greenhouse experiments, we manipulated clonal structure and resource availability. We assessed the effects of floral position and clonal integration on floral traits through model selection. Our results showed that basal flowers generally had larger traits, more attractive to pollinators, and isolated or defoliated ramets exhibited significant reductions in floral traits, especially at distal flowers. Clonal integration stabilized floral traits across positions by mitigating the effects of resource variability. Clonal integration in E. crassipes enhances resilience to resource depletion, likely contributing to this species invasiveness. These findings highlight the significance of clonal and architectural integration in sustaining reproductive traits under environmental stress.
Collapse
Affiliation(s)
- Guilherme Ramos Demetrio
- Plant Ecology Lab, Penedo Educational Unit, Campus Arapiraca, Federal University of Alagoas, Av. Beira Rio, s/n, Centro Histórico, Penedo 57200-000, AL, Brazil;
| | - Luziene Seixas
- Plant Ecology Lab, Penedo Educational Unit, Campus Arapiraca, Federal University of Alagoas, Av. Beira Rio, s/n, Centro Histórico, Penedo 57200-000, AL, Brazil;
- Graduate Program in Ecology (PPG-Ecology), State University of Campinas, Campinas 13083-862, SP, Brazil
| | - Flávia de Freitas Coelho
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Lavras 37200-000, MG, Brazil;
| |
Collapse
|
2
|
Herrera CM. Plant Phenotypes as Distributions: Johannsen's Beans Revisited. Am Nat 2024; 203:219-229. [PMID: 38306280 DOI: 10.1086/727966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractIn the early twentieth century, Wilhelm Johannsen's breeding experiments on pure lines of beans provided empirical support for his groundbreaking distinction between phenotype and genotype, the foundation stone of classical genetics. In contrast with the controversial history of the genotype concept, the notion of phenotype has remained essentially unrevised since then. The application of the Johannsenian concept of phenotype to modularly built, nonunitary plants, however, needs reexamination. In the first part of this article it is shown that Johannsen's appealing solution for dealing with the multiplicity of nonidentical organs produced by plant individuals (representing individual plant phenotypes by arithmetic means), which has persisted to this day, reflected his intellectual commitment to nineteenth-century typological thinking. Revisitation of Johannsen's results using current statistical tools upholds his major conclusion about the nature of heredity but at the same time falsifies two important ancillary conclusions of his experiments-namely, the alleged homogeneity of pure lines (genotypes) regarding seed weight variability and the lack of transgenerational effects of within-line (within-genotype) seed weight variation. The canonical notion of individual plant phenotypes as arithmetic means should therefore be superseded by a concept of phenotype as a dual property, consisting of central tendency and variability components of organ trait distribution. Phenotype duality offers a unifying framework applicable to all nonunitary organisms.
Collapse
|
3
|
Herrera CM, Bazaga P, Pérez R, Alonso C. Lifetime genealogical divergence within plants leads to epigenetic mosaicism in the shrub Lavandula latifolia (Lamiaceae). THE NEW PHYTOLOGIST 2021; 231:2065-2076. [PMID: 33634863 DOI: 10.1111/nph.17257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic mosaicism is a possible source of within-plant phenotypic heterogeneity, yet its frequency and developmental origin remain unexplored. This study examines whether extant epigenetic heterogeneity within Lavandula latifolia (Lamiaceae) shrubs reflects recent epigenetic modifications experienced independently by different plant parts or, alternatively, it is the cumulative outcome of a steady lifetime process. Leaf samples from different architectural modules (branch tips) were collected from three L. latifolia plants and characterized epigenetically by global DNA cytosine methylation and methylation state of methylation-sensitive amplified fragment-length polymorphism (MS-AFLP) markers. Epigenetic characteristics of modules were then assembled with information on the branching history of plants. Methods borrowed from phylogenetic research were used to assess genealogical signal of extant epigenetic variation and reconstruct within-plant genealogical trajectory of epigenetic traits. Plants were epigenetically heterogeneous, as shown by differences among modules in global DNA methylation and variation in the methylation states of 6 to 8% of MS-AFLP markers. All epigenetic features exhibited significant genealogical signal within plants. Events of epigenetic divergence occurred throughout the lifespan of individuals and were subsequently propagated by branch divisions. Internal epigenetic diversification of L. latifolia individuals took place steadily during their development, a process which eventually led to persistent epigenetic mosaicism.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, Sevilla, E-41092, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, Sevilla, E-41092, Spain
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, CSIC-US, Avda. Américo Vespucio 49, Sevilla, E-41092, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, Sevilla, E-41092, Spain
| |
Collapse
|
4
|
March-Salas M, Fandos G, Fitze PS. Effects of intrinsic environmental predictability on intra-individual and intra-population variability of plant reproductive traits and eco-evolutionary consequences. ANNALS OF BOTANY 2021; 127:413-423. [PMID: 32421780 PMCID: PMC7988524 DOI: 10.1093/aob/mcaa096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS It is widely accepted that changes in the environment affect mean trait expression, but little is known about how the environment shapes intra-individual and intra-population variance. Theory suggests that intra-individual variance might be plastic and under natural selection, rather than reflecting developmental noise, but evidence for this hypothesis is scarce. Here, we experimentally tested whether differences in intrinsic environmental predictability affect intra-individual and intra-population variability of different reproductive traits, and whether intra-individual variability is under selection. METHODS Under field conditions, we subjected Onobrychis viciifolia to more and less predictable precipitation over 4 generations and 4 years. We analysed effects on the coefficient of intra-individual variation (CVi-i) and the coefficient of intra-population variation (CVi-p), assessed whether the coefficients of intra-individual variation (CsVi-i) are under natural selection and tested for transgenerational responses (ancestor environmental effects on offspring). KEY RESULTS Less predictable precipitation led to higher CsVi-i and CsVi-p, consistent with plastic responses. The CsVi-i of all studied traits were under consistent stabilizing selection, and precipitation predictability affected the strength of selection and the location of the optimal CVi-i of a single trait. All CsVi-i differed from the optimal CVi-i and the maternal and offspring CsVi-i were positively correlated, showing that there was scope for change. Nevertheless, no consistent transgenerational effects were found in any of the three descendant generations, which contrasts with recent studies that detected rapid transgenerational responses in the trait means of different plant species. This suggests that changes in intra-individual variability take longer to evolve than changes in trait means, which may explain why high intra-individual variability is maintained, despite the stabilizing selection. CONCLUSIONS The results indicate that plastic changes of intra-individual variability are an important determinant of whether plants will be able to cope with changes in environmental predictability induced by the currently observed climatic change.
Collapse
Affiliation(s)
- Martí March-Salas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
- Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Nuestra Señora de la Victoria, Jaca, Spain
- For correspondence. E-mail or
| | - Guillermo Fandos
- Department of Geography, Humboldt-Universität zu Berlin, Rudower Chaussee, Berlin, Germany
| | - Patrick S Fitze
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
- Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Nuestra Señora de la Victoria, Jaca, Spain
- For correspondence. E-mail or
| |
Collapse
|
5
|
Vescio R, Abenavoli MR, Araniti F, Musarella CM, Sofo A, Laface VLA, Spampinato G, Sorgonà A. The Assessment and the Within-Plant Variation of the Morpho-Physiological Traits and VOCs Profile in Endemic and Rare Salvia ceratophylloides Ard. (Lamiaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:474. [PMID: 33802380 PMCID: PMC7998927 DOI: 10.3390/plants10030474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Salvia ceratophylloides (Ard.) is an endemic and rare plant species recently rediscovered as very few individuals at two different Southern Italy sites. The study of within-plant variation is fundamental to understand the plant adaptation to the local conditions, especially in rare species, and consequently to preserve plant biodiversity. Here, we reported the variation of the morpho-ecophysiological and metabolic traits between the sessile and petiolate leaf of S. ceratophylloides plants at two different sites for understanding the adaptation strategies for surviving in these habitats. The S. ceratophylloides individuals exhibited different net photosynthetic rate, maximum quantum yield, light intensity for the saturation of the photosynthetic machinery, stomatal conductance, transpiration rate, leaf area, fractal dimension, and some volatile organic compounds (VOCs) between the different leaf types. This within-plant morpho-physiological and metabolic variation was dependent on the site. These results provide empirical evidence of sharply within-plant variation of the morpho-physiological traits and VOCs profiles in S. ceratophylloides, explaining the adaptation to the local conditions.
Collapse
Affiliation(s)
- Rosa Vescio
- Department of Agricultural Sciences, “Mediterranea” University of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy; (R.V.); (M.R.A.); (C.M.M.); (V.L.A.L.); (G.S.)
| | - Maria Rosa Abenavoli
- Department of Agricultural Sciences, “Mediterranea” University of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy; (R.V.); (M.R.A.); (C.M.M.); (V.L.A.L.); (G.S.)
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy;
| | - Carmelo Maria Musarella
- Department of Agricultural Sciences, “Mediterranea” University of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy; (R.V.); (M.R.A.); (C.M.M.); (V.L.A.L.); (G.S.)
| | - Adriano Sofo
- Department of European and Mediterranean Cultures, Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Valentina Lucia Astrid Laface
- Department of Agricultural Sciences, “Mediterranea” University of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy; (R.V.); (M.R.A.); (C.M.M.); (V.L.A.L.); (G.S.)
| | - Giovanni Spampinato
- Department of Agricultural Sciences, “Mediterranea” University of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy; (R.V.); (M.R.A.); (C.M.M.); (V.L.A.L.); (G.S.)
| | - Agostino Sorgonà
- Department of Agricultural Sciences, “Mediterranea” University of Reggio Calabria, Feo di Vito, 89124 Reggio Calabria, Italy; (R.V.); (M.R.A.); (C.M.M.); (V.L.A.L.); (G.S.)
| |
Collapse
|
6
|
Pélabon C, Hilde CH, Einum S, Gamelon M. On the use of the coefficient of variation to quantify and compare trait variation. Evol Lett 2020; 4:180-188. [PMID: 32547779 PMCID: PMC7293077 DOI: 10.1002/evl3.171] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022] Open
Abstract
Meaningful comparison of variation in quantitative trait requires controlling for both the dimension of the varying entity and the dimension of the factor generating variation. Although the coefficient of variation (CV; standard deviation divided by the mean) is often used to measure and compare variation of quantitative traits, it only accounts for the dimension of the former, and its use for comparing variation may sometimes be inappropriate. Here, we discuss the use of the CV to compare measures of evolvability and phenotypic plasticity, two variational properties of quantitative traits. Using a dimensional analysis, we show that contrary to evolvability, phenotypic plasticity cannot be meaningfully compared across traits and environments by mean‐scaling trait variation. We further emphasize the need of remaining cognizant of the dimensions of the traits and the relationship between mean and standard deviation when comparing CVs, even when the scales on which traits are expressed allow meaningful calculation of the CV.
Collapse
Affiliation(s)
- Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway
| | - Christoffer H Hilde
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway
| | - Sigurd Einum
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway
| | - Marlène Gamelon
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway
| |
Collapse
|
7
|
Herrera CM, Medrano M, Pérez R, Bazaga P, Alonso C. Within-plant heterogeneity in fecundity and herbivory induced by localized DNA hypomethylation in the perennial herb Helleborus foetidus. AMERICAN JOURNAL OF BOTANY 2019; 106:798-806. [PMID: 31157419 DOI: 10.1002/ajb2.1291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Phenotypic heterogeneity of reiterated, homologous structures produced by individual plants has ecological consequences for plants and their animal consumers. This paper examines experimentally the epigenetic mosaicism hypothesis, which postulates that within-plant variation in traits of reiterated structures may partly arise from different parts of the same genetic individual differing in patterns or extent of genomic DNA methylation. METHODS Leaves of paired ramets borne by field-growing Helleborus foetidus plants were infiltrated periodically over the entire flowering period with either a water solution of the demethylating agent zebularine or just water as the control. The effects of the zebularine treatment were assessed by quantifying genome-wide DNA cytosine methylation in leaves and monitoring inflorescence growth and flower production, number of ovules per flower, pollination success, fruit set, seed set, seed size, and distribution of sap-feeding insects. RESULTS Genomic DNA from leaves in zebularine-treated ramets was significantly less methylated than DNA from leaves in control ones. Inflorescences in treated ramets grew smaller and produced fewer flowers, with fewer ovules and lower follicle and seed set, but did not differ from inflorescences in untreated ramets in pollination success or seed size. The zebularine treatment influenced the within-plant distribution of sap-feeding insects. CONCLUSIONS Experimental manipulation of genomic DNA methylation level in leaves of wild-growing H. foetidus plants induced considerable within-plant heterogeneity in phenotypic (inflorescences, flowers, fecundity) and ecologically relevant traits (herbivore distribution), which supports the hypothesis that epigenetic mosaicism may partly account for within-plant variation.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| |
Collapse
|
8
|
Alonso C, Pérez R, Bazaga P, Medrano M, Herrera CM. Within-plant variation in seed size and inflorescence fecundity is associated with epigenetic mosaicism in the shrub Lavandula latifolia (Lamiaceae). ANNALS OF BOTANY 2018; 121:153-160. [PMID: 29186299 PMCID: PMC5786237 DOI: 10.1093/aob/mcx140] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/02/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Sub-individual variation in traits of homologous structures has multiple ecological consequences for individuals and populations. Assessing the evolutionary significance of such effects requires an improved knowledge of the mechanisms underlying within-plant phenotypic heterogeneity. The hypothesis that continuous within-plant variation in some phenotypic traits can be associated with epigenetic mosaicism was examined. METHODS Fifteen individuals of the long-lived, evergreen Mediterranean shrub Lavandula latifolia were studied. Five widely spaced 'modules', each consisting of a single inflorescence plus all its subtending basal leaves, were collected from each shrub. Genomic DNA was extracted from leaf samples and genome-wide cytosine methylation determined by reversed phase high-performance liquid chromatography (HPLC) with spectrofluorimetric detection. The number and mean mass of seeds produced were determined for each inflorescence. An assessment was made of whether (1) leaves from different modules in the same plant differed significantly in global DNA cytosine methylation, and (2) mosaicism in cytosine methylation contributed to explain variation across modules in number and size of seeds. KEY RESULTS Leaves from different modules in the same plant differed in global DNA cytosine methylation. The magnitude of epigenetic mosaicism was substantial, as the variance in DNA methylation among modules of the same shrub was greater than the variance between individuals. Number and mean mass of seeds produced by individual inflorescences varied within plants and were quadratically related to cytosine methylation of subtending leaves, with an optimum at an intermediate methylation level (approx. 25 %). CONCLUSIONS The results support a causal link between global cytosine methylation of leaves in a module and the size and numbers of seeds produced by the associated inflorescence. It is proposed that variation in global DNA methylation within L. latifolia shrubs may result from the concerted action of plant sectoriality and differential exposure of different plant parts to some environmental factor(s) with a capacity to induce durable epigenetic changes.
Collapse
Affiliation(s)
- Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio, Sevilla, Spain
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, CSIC-US, Avda. Américo Vespucio, Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio, Sevilla, Spain
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio, Sevilla, Spain
| | - Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio, Sevilla, Spain
| |
Collapse
|
9
|
Arceo-Gómez G, Vargas CF, Parra-Tabla V. Selection on intra-individual variation in stigma-anther distance in the tropical tree Ipomoea wolcottiana (Convolvulaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:454-459. [PMID: 28135024 DOI: 10.1111/plb.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
It is well known that animals can exert strong selective pressures on plant traits. However, studies on the evolutionary consequences of plant-animal interactions have mainly focused on understanding how these interactions shape trait means, while overlooking its potential direct effect on the variability among structures within a plant (e.g. flowers and fruits). The degree of within-plant variability can have strong fitness effects but few studies have evaluated its role as a potential target of selection. Here we reanalysed data on Ipomoea wolcottiana stigma-anther distance to test alternate mechanisms driving selection on the mean as well as on intra-individual variance in 2 years. We found strong negative selection acting on intra-individual variation but not on mean stigma-anther distance, suggesting independent direct selection on the latter. Our result suggests that intra-individual variance has the potential to be an important target of selection in nature, and that ignoring it could lead to the wrong characterisation of the selection regime. We highlight the need for future studies to consider patterns of selection on the mean as well as on intra-individual variance if we want to understand the full extent of plant-animal interactions as an evolutionary force in nature.
Collapse
Affiliation(s)
- G Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - C F Vargas
- Laboratorio de Variación Biológica y Evolución, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, México, México
| | - V Parra-Tabla
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, México
| |
Collapse
|