1
|
Larue F, Rouan L, Pot D, Rami JF, Luquet D, Beurier G. Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1393965. [PMID: 39139722 PMCID: PMC11319263 DOI: 10.3389/fpls.2024.1393965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Introduction Predicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects. Methods In this study, we propose a type of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN) and compare it to two classical GP regression methods for their ability to predict an integrative trait of sorghum: aboveground fresh weight accumulation. We also suggest that the use of a crop growth model (CGM) can enhance predictions of integrative traits by decomposing them into more heritable intermediate traits. Results The results show that CNN outperformed both LASSO and Bayes C methods in accuracy, suggesting that CNN are better suited to predict integrative traits. Furthermore, the predictive ability of the combined CGM-GP approach surpassed that of GP without the CGM integration, irrespective of the regression method used. Discussion These results are consistent with recent works aiming to develop Genome-to-Phenotype models and advocate for the use of non-linear prediction methods, and the use of combined CGM-GP to enhance the prediction of crop performances.
Collapse
Affiliation(s)
- Florian Larue
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, France
- Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, France
| | - Lauriane Rouan
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, France
- Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, France
| | - David Pot
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, France
- Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, France
| | - Jean-François Rami
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, France
- Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, France
| | - Delphine Luquet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, France
- Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, France
| | - Grégory Beurier
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, France
- Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, France
| |
Collapse
|
2
|
Blanc E, Enjalbert J, Flutre T, Barbillon P. Efficient Bayesian automatic calibration of a functional-structural wheat model using an adaptive design and a metamodelling approach. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6722-6734. [PMID: 37632355 DOI: 10.1093/jxb/erad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
Functional-structural plant models are increasingly being used by plant scientists to address a wide variety of questions. However, the calibration of these complex models is often challenging, mainly because of their high computational cost, and, as a result, error propagation is usually ignored. Here we applied an automatic method to the calibration of WALTer: a functional-structural wheat model that simulates the plasticity of tillering in response to competition for light. We used a Bayesian calibration method to jointly estimate the values of five parameters and quantify their uncertainty by fitting the model outputs to tillering dynamics data. We made recourse to Gaussian process metamodels in order to alleviate the computational cost of WALTer. These metamodels are built from an adaptive design that consists of successive runs of WALTer chosen by an efficient global optimization algorithm specifically adapted to this particular calibration task. The method presented here performed well on both synthetic and experimental data. It is an efficient approach for the calibration of WALTer and should be of interest for the calibration of other functional-structural plant models.
Collapse
Affiliation(s)
- Emmanuelle Blanc
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190, Gif-sur-Yvette, France
| | - Jérôme Enjalbert
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190, Gif-sur-Yvette, France
| | - Timothée Flutre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190, Gif-sur-Yvette, France
| | - Pierre Barbillon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| |
Collapse
|
3
|
van der Meer M, Lee H, de Visser PHB, Heuvelink E, Marcelis LFM. Consequences of interplant trait variation for canopy light absorption and photosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1012718. [PMID: 36743508 PMCID: PMC9895853 DOI: 10.3389/fpls.2023.1012718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Plant-to-plant variation (interplant variation) may play an important role in determining individual plant and whole canopy performance, where interplant variation in architecture and photosynthesis traits has direct effects on light absorption and photosynthesis. We aimed to quantify the importance of observed interplant variation on both whole-plant and canopy light absorption and photosynthesis. Plant architecture was measured in two experiments with fruiting tomato crops (Solanum lycopersicum) grown in glasshouses in the Netherlands, in week 16 (Exp. 1) or week 19 (Exp. 2) after transplanting. Experiment 1 included four cultivars grown under three supplementary lighting treatments, and Experiment 2 included two different row orientations. Measured interplant variations of the architectural traits, namely, internode length, leaf area, petiole angle, and leaflet angle, as well as literature data on the interplant variation of the photosynthesis traits alpha, J max28, and V cmax28, were incorporated in a static functional-structural plant model (FSPM). The FSPM was used to analyze light absorption and net photosynthesis of whole plants in response to interplant variation in architectural and photosynthesis traits. Depending on the trait, introducing interplant variation in architecture and photosynthesis traits in a functional-structural plant model did not affect or negatively affected canopy light absorption and net photosynthesis compared with the reference model without interplant variation. Introducing interplant variation of architectural and photosynthesis traits in FSPM results in a more realistic simulation of variation of plants within a canopy. Furthermore, it can improve the accuracy of simulation of canopy light interception and photosynthesis although these effects at the canopy level are relatively small (<4% for light absorption and<7% for net photosynthesis).
Collapse
Affiliation(s)
- Maarten van der Meer
- Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands
| | - Hyeran Lee
- Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands
| | | | - Ep Heuvelink
- Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
Taylor G, Donnison IS, Murphy-Bokern D, Morgante M, Bogeat-Triboulot MB, Bhalerao R, Hertzberg M, Polle A, Harfouche A, Alasia F, Petoussi V, Trebbi D, Schwarz K, Keurentjes JJB, Centritto M, Genty B, Flexas J, Grill E, Salvi S, Davies WJ. Sustainable bioenergy for climate mitigation: developing drought-tolerant trees and grasses. ANNALS OF BOTANY 2019; 124:513-520. [PMID: 31665761 PMCID: PMC6821384 DOI: 10.1093/aob/mcz146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/23/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Bioenergy crops are central to climate mitigation strategies that utilize biogenic carbon, such as BECCS (bioenergy with carbon capture and storage), alongside the use of biomass for heat, power, liquid fuels and, in the future, biorefining to chemicals. Several promising lignocellulosic crops are emerging that have no food role - fast-growing trees and grasses - but are well suited as bioenergy feedstocks, including Populus, Salix, Arundo, Miscanthus, Panicum and Sorghum. SCOPE These promising crops remain largely undomesticated and, until recently, have had limited germplasm resources. In order to avoid competition with food crops for land and nature conservation, it is likely that future bioenergy crops will be grown on marginal land that is not needed for food production and is of poor quality and subject to drought stress. Thus, here we define an ideotype for drought tolerance that will enable biomass production to be maintained in the face of moderate drought stress. This includes traits that can readily be measured in wide populations of several hundred unique genotypes for genome-wide association studies, alongside traits that are informative but can only easily be assessed in limited numbers or training populations that may be more suitable for genomic selection. Phenotyping, not genotyping, is now the major bottleneck for progress, since in all lignocellulosic crops studied extensive use has been made of next-generation sequencing such that several thousand markers are now available and populations are emerging that will enable rapid progress for drought-tolerance breeding. The emergence of novel technologies for targeted genotyping by sequencing are particularly welcome. Genome editing has already been demonstrated for Populus and offers significant potential for rapid deployment of drought-tolerant crops through manipulation of ABA receptors, as demonstrated in Arabidopsis, with other gene targets yet to be tested. CONCLUSIONS Bioenergy is predicted to be the fastest-developing renewable energy over the coming decade and significant investment over the past decade has been made in developing genomic resources and in collecting wild germplasm from within the natural ranges of several tree and grass crops. Harnessing these resources for climate-resilient crops for the future remains a challenge but one that is likely to be successful.
Collapse
Affiliation(s)
- G Taylor
- School of Biological Sciences, University of Southampton, Southampton, UK
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | - I S Donnison
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | | | - M Morgante
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze, Udine, Italy
| | | | - R Bhalerao
- Department of Forest Genetics and Plant Physiology, Umea Plant Sciences Centre, Swedish University of Agricultural Sciences, Umea, Sweden
| | - M Hertzberg
- SweTree Technologies AB, SE-904 03 Umeå, Sweden
| | - A Polle
- Büsgen‐Institute, Department of Forest Botany and Tree Physiology, Georg‐August University, Göttingen, Germany
| | - A Harfouche
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - F Alasia
- Franco Alasia Vivai, Strada Solerette, Savigliano, Italy
| | - V Petoussi
- Department of Sociology, University of Crete, Rethymno, Greece
| | - D Trebbi
- Geneticlab, Via Roveredo, Pordenone, Italy
| | - K Schwarz
- Julius Kühn‐Institut (JKI) Bundesforschungsinstitut für Kulturpflanzen, Institute for Crop and Soil Science, Bundesallee 50, D‐38116 Braunschweig, Germany
| | - J J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - M Centritto
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino, Italy
| | - B Genty
- Aix-Marseille University, CEA, CNRS, BIAM, UMR 7265, Saint Paul lez Durance, France
| | - J Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Illes Balears, Spain
| | - E Grill
- Lehrstuhl für Botanik, Technische Universität München, Freising, Germany
| | - S Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, Bologna, Italy
| | - W J Davies
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|