1
|
Kück P, Wilkinson M, Romahn J, Seidel N, Meusemann K, Wägele J. Unraveling myriapod evolution: sealion, a novel quartet-based approach for evaluating phylogenetic uncertainty. NAR Genom Bioinform 2025; 7:lqaf018. [PMID: 40060371 PMCID: PMC11886814 DOI: 10.1093/nargab/lqaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 04/16/2025] Open
Abstract
Myriapods, a diverse group of terrestrial arthropods, comprise four main subgroups: Chilopoda (centipedes), Diplopoda (millipedes), Pauropoda, and Symphyla. Recent phylogenomic studies affirm Myriapoda's monophyly and the monophyletic status of each subgroup but differ in their relationships. To investigate these relationships further, we reanalyzed a transcriptomic dataset of 59 species across 292 single-copy protein-coding genes. Departing from conventional methods, we employed a novel approach that relies on information from polarized quartets (i.e., sets of four orthologous sequences, with one being an outgroup) to evaluate molecular phylogenies. This Hennigian analysis reduces misleading phylogenetic signals in molecular data caused by convergence, plesiomorphy, and rate heterogeneity across sites and across lineages. Our findings reveal that some species, especially those with long root-to-tip distances, disproportionately contribute misleading signals. Analyses using conventional likelihood-based phylogenetic methods suggest that Chilopoda and Diplopoda are sister taxa. By contrast, analyses incorporating novel filters designed to minimize conflict among phylogenetically confounding signals support the monophyly of Progoneata, aligning with morphological evidence. Simulations validate the reliability of our approach, demonstrating its potential to resolve myriapod evolutionary relationships and highlight uncertainty.
Collapse
Affiliation(s)
- Patrick Kück
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 160, 53113 Bonn, Germany
| | - Mark Wilkinson
- Herpetology Lab, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Juliane Romahn
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 160, 53113 Bonn, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Society for Nature Research, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Nathan I Seidel
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 160, 53113 Bonn, Germany
| | - Karen Meusemann
- Directorate, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 160, 53113 Bonn, Germany
| | - Johann W Wägele
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 160, 53113 Bonn, Germany
| |
Collapse
|
2
|
Zhao J, Huang CJ, Jiang LJ, He ZR, Yang S, Zhu ZM, Zhang L, Yu H, Zhou XM, Wang JG. Phylogenomic analyses of the pantropical Platycerium Desv. (Platycerioideae) reveal their complex evolution and historical biogeography. Mol Phylogenet Evol 2024; 201:108213. [PMID: 39393764 DOI: 10.1016/j.ympev.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Platycerium is a genus of pantropical epiphytic ferns consisting of ca. 18 species and are highly sought after by horticultural enthusiasts. Although the monophyly of this genus has been well supported in previous molecular studies, as an intercontinentally disjunct genus, the origin and distribution pattern of Platycerium were elusive and controversial. This is mainly due to limited taxon sampling, a plastid representing only a single coalescent history, the lack of fossil evidence, and so on. Here, by utilizing genome-skimming sequencing, transcriptome sequencing, and flow cytometry, we integrated chloroplast genomes, data of single-copy nuclear genes, ploidy levels, morphology, and geographic distribution to understand the species phylogeny and the evolutionary and biogeographic history of Platycerium. Our major results include: (1) based on both plastid and nuclear datasets, Platycerium is consistently resolved into three fully supported clades: the Afro-American (AA) clade, the Javan-Australian (JA) clade, and the Malayan-Asian (MA) clade. The AA clade and MA clade are further divided into three and two subclades, respectively; (2) a large amount of gene tree conflict, as well as cytonuclear discordance, was found and can be explained by hybridization and incomplete lineage sorting, and most of the hybridization hypotheses represented ancient hybridization events; (3) through molecular dating, the crown age of Platycerium is determined to be at approximately 32.79 Ma based on the plastid dataset or 29.08 Ma based on the nuclear dataset in the Middle Oligocene; (4) ancestral area reconstruction analysis from different datasets showed that Platycerium most likely originated from Indochina; (5) current distribution patterns are resultant from long-distance dispersals, ancient orogeny, and an ancient climate event; and (6) species diversification was driven by polyploidization, dispersal, and hybridization. This study presented here will help understand the evolution of tropical plant flora and provide a reference for the cultivation and breeding of staghorn ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Ju Jiang
- Gardening and Horticulture Center, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Shuai Yang
- Plant Fairyland, Boda Road, Chenggong District, Kunming 650503, Yunnan, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
3
|
Mason-Gamer RJ, White DM. The phylogeny of the Triticeae: Resolution and phylogenetic conflict based on genomewide nuclear loci. AMERICAN JOURNAL OF BOTANY 2024; 111:e16404. [PMID: 39279223 DOI: 10.1002/ajb2.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 09/18/2024]
Abstract
PREMISE The wheat tribe, Triticeae, has been the subject of molecular phylogenetic analyses for nearly three decades, and extensive phylogenetic conflict has been apparent from the earliest comparisons among DNA-based data sets. While most previous analyses focused primarily on nuclear vs. chloroplast DNA conflict, the present analysis provides a broader picture of conflict among nuclear loci throughout the tribe. METHODS Exon data were generated from over 1000 nuclear loci using targeted sequence capture with custom baits, and nearly complete chloroplast genome sequences were recovered. Phylogenetic conflict was assessed among the trees from the chloroplast genomes, the concatenated nuclear loci, and a series of nuclear-locus subsets guided by Hordeum chromosome gene maps. RESULTS At the intergeneric level, the analyses collectively revealed a few broadly consistent relationships. However, the prevailing pattern was one of extensive phylogenetic conflict throughout the tribe, among both deep and shallow branches, and with the extent of the conflict varying among data subsets. CONCLUSIONS The results suggest continual introgression or lineage sorting within and among the named lineages of the Triticeae, shaping both deep and shallow relationships in the tribe.
Collapse
Affiliation(s)
- Roberta J Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, MC 066, 845 W. Taylor Street, Chicago, 60607 USA, IL
| | - Dawson M White
- Department of Biological Sciences, University of Illinois at Chicago, MC 066, 845 W. Taylor Street, Chicago, 60607 USA, IL
| |
Collapse
|
4
|
Zhao J, Zhou X, Fang S, Zhu Z, Li Y, Yu H, He Z. Transcriptome-Based Study on the Phylogeny and Hybridization of Marattialean Ferns (Marattiaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2237. [PMID: 37375862 DOI: 10.3390/plants12122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Marattiaceae is a phylogenetically isolated family of tropical eusporangiate ferns including six genera with more than one-hundred species. In Marattiaceae, monophyly of genera has been well-supported phylogenetically. However, the phylogenetic relationships among them were elusive and controversial. Here, a dataset of 26 transcriptomes (including 11 newly generated) were used to assess single-copy nuclear genes and to obtain the organelle gene sequences. Through phylotranscriptomic analysis, the phylogeny and hybridization events of Marattiaceae were explored and a robust phylogenomic framework for the evolution of Marattiaceae was provided. Using both concatenation- and coalescent-based phylogenies, the gene-tree discordance, incomplete lineage sorting (ILS) simulations, and network inference were examined. Except the low support with mitochondrial genes of Marattiaceae, nuclear genes and chloroplast genes strongly supported a sister relationship between Marattiaceae and leptosporangiate ferns. At the genus level, all phylogenetic analysis based on nuclear genes datasets recovered five genera in Marattiaceae as monophyletic with strong support. Danaea and Ptisana were the first two diverged clades in turn. Christensenia was a sister clade to the clade Marattia + Angiopteris s.l. In Angiopteris s.l., three clades (Angiopteris s.s., the Archangiopteris group, and An. sparsisora) were well identified with maximum support. The Archangiopteris group was derived from Angiopteris s.s. at ca. 18 Ma. The putative hybrid species An. sparsisora between Angiopteris s.s. and the Archangiopteris group was verified by the species network analyses and the maternal plastid genes. This study will improve our understanding for using the phylotranscriptomic method to explore phylogeny and investigate hybridization events for difficult taxa in ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| | - Xinmao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shaoli Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhangming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuxin Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
5
|
Sielemann K, Pucker B, Schmidt N, Viehöver P, Weisshaar B, Heitkam T, Holtgräwe D. Complete pan-plastome sequences enable high resolution phylogenetic classification of sugar beet and closely related crop wild relatives. BMC Genomics 2022; 23:113. [PMID: 35139817 PMCID: PMC8830136 DOI: 10.1186/s12864-022-08336-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background As the major source of sugar in moderate climates, sugar-producing beets (Beta vulgaris subsp. vulgaris) have a high economic value. However, the low genetic diversity within cultivated beets requires introduction of new traits, for example to increase their tolerance and resistance attributes – traits that often reside in the crop wild relatives. For this, genetic information of wild beet relatives and their phylogenetic placements to each other are crucial. To answer this need, we sequenced and assembled the complete plastome sequences from a broad species spectrum across the beet genera Beta and Patellifolia, both embedded in the Betoideae (order Caryophyllales). This pan-plastome dataset was then used to determine the wild beet phylogeny in high-resolution. Results We sequenced the plastomes of 18 closely related accessions representing 11 species of the Betoideae subfamily and provided high-quality plastome assemblies which represent an important resource for further studies of beet wild relatives and the diverse plant order Caryophyllales. Their assembly sizes range from 149,723 bp (Beta vulgaris subsp. vulgaris) to 152,816 bp (Beta nana), with most variability in the intergenic sequences. Combining plastome-derived phylogenies with read-based treatments based on mitochondrial information, we were able to suggest a unified and highly confident phylogenetic placement of the investigated Betoideae species. Our results show that the genus Beta can be divided into the two clearly separated sections Beta and Corollinae. Our analysis confirms the affiliation of B. nana with the other Corollinae species, and we argue against a separate placement in the Nanae section. Within the Patellifolia genus, the two diploid species Patellifolia procumbens and Patellifolia webbiana are, regarding the plastome sequences, genetically more similar to each other than to the tetraploid Patellifolia patellaris. Nevertheless, all three Patellifolia species are clearly separated. Conclusion In conclusion, our wild beet plastome assemblies represent a new resource to understand the molecular base of the beet germplasm. Despite large differences on the phenotypic level, our pan-plastome dataset is highly conserved. For the first time in beets, our whole plastome sequences overcome the low sequence variation in individual genes and provide the molecular backbone for highly resolved beet phylogenomics. Hence, our plastome sequencing strategy can also guide genomic approaches to unravel other closely related taxa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08336-8.
Collapse
Affiliation(s)
- Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.,Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.,Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.,Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
| | - Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany.
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
6
|
Zhao F, Chen YP, Salmaki Y, Drew BT, Wilson TC, Scheen AC, Celep F, Bräuchler C, Bendiksby M, Wang Q, Min DZ, Peng H, Olmstead RG, Li B, Xiang CL. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biol 2021; 19:2. [PMID: 33419433 PMCID: PMC7796571 DOI: 10.1186/s12915-020-00931-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A robust molecular phylogeny is fundamental for developing a stable classification and providing a solid framework to understand patterns of diversification, historical biogeography, and character evolution. As the sixth largest angiosperm family, Lamiaceae, or the mint family, consitutes a major source of aromatic oil, wood, ornamentals, and culinary and medicinal herbs, making it an exceptionally important group ecologically, ethnobotanically, and floristically. The lack of a reliable phylogenetic framework for this family has thus far hindered broad-scale biogeographic studies and our comprehension of diversification. Although significant progress has been made towards clarifying Lamiaceae relationships during the past three decades, the resolution of a phylogenetic backbone at the tribal level has remained one of the greatest challenges due to limited availability of genetic data. RESULTS We performed phylogenetic analyses of Lamiaceae to infer relationships at the tribal level using 79 protein-coding plastid genes from 175 accessions representing 170 taxa, 79 genera, and all 12 subfamilies. Both maximum likelihood and Bayesian analyses yielded a more robust phylogenetic hypothesis relative to previous studies and supported the monophyly of all 12 subfamilies, and a classification for 22 tribes, three of which are newly recognized in this study. As a consequence, we propose an updated phylogenetically informed tribal classification for Lamiaceae that is supplemented with a detailed summary of taxonomic history, generic and species diversity, morphology, synapomorphies, and distribution for each subfamily and tribe. CONCLUSIONS Increased taxon sampling conjoined with phylogenetic analyses based on plastome sequences has provided robust support at both deep and shallow nodes and offers new insights into the phylogenetic relationships among tribes and subfamilies of Lamiaceae. This robust phylogenetic backbone of Lamiaceae will serve as a framework for future studies on mint classification, biogeography, character evolution, and diversification.
Collapse
Affiliation(s)
- Fei Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yasaman Salmaki
- Center of Excellence in Phylogeny of Living Organisms, Department of Plant Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Bryan T Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, 68849, USA
| | - Trevor C Wilson
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, Australia
| | | | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale, Turkey
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christian Bräuchler
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010, Wien, Austria
| | - Mika Bendiksby
- NTNU University Museum, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Qiang Wang
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinense Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Dao-Zhang Min
- Research Centre of Ecological Sciences, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | - Bo Li
- Research Centre of Ecological Sciences, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
7
|
Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Mol Phylogenet Evol 2019; 142:106641. [PMID: 31605813 DOI: 10.1016/j.ympev.2019.106641] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
The family Caprifoliaceae s.l. is an asterid angiosperm clade of ca. 960 species, most of which are distributed in temperate regions of the northern hemisphere. Recent studies show that the family comprises seven major clades: Linnaeoideae, Zabelia, Morinoideae, Dipsacoideae, Valerianoideae, Caprifolioideae, and Diervilloideae. However, its phylogeny at the subfamily or genus level remains controversial, and the backbone relationships among subfamilies are incompletely resolved. In this study, we utilized complete plastome sequencing to resolve the relationships among the subfamilies of the Caprifoliaceae s.l. and clarify several long-standing controversies. We generated and analyzed plastomes of 48 accessions of Caprifoliaceae s.l., representing 44 species, six subfamilies and one genus. Combined with available Caprifoliaceae s.l. plastomes on GenBank and 12 outgroups, we analyzed a final dataset of 68 accessions. Genome structure was strongly conserved in general, although the boundaries between the Inverted Repeat were found to have contracted across Caprifoliaceae s.l. to exclude rpl2, rps19, and ycf1, all or parts of which are typically present in the IR of most angiosperms. The ndhF gene was found to have been inverted in all plastomes of Adoxaceae. Phylogenomic analyses of 68 complete plastomes yielded a highly supported topology that strongly supported the monophyly of Zabelia and its sister relationship to Morinoideae. Moreover, a clade of Valerianoideae + Dipsacoideae was recovered as sister to a clade of Linnaeoideae + Zabelia + Morinoideae clade, and Heptacodium was sister to remaining Caprifolioideae. The Diervilloideae and Caprifolioideae were successively sister to all other Caprifoliaceae s.l. Major lineages of Caprifoliaceae s.l. were estimated to have diverged from the Upper Cretaceous to the Eocene (50-100 Ma), whereas within-genus diversification was dated to the Oligocene and later, concomitant with global cooling and drying. Our results demonstrate the power of plastid phylogenomics in improving estimates of phylogeny among genera and subfamilies, and provide new insights into plastome evolution across Caprifoliaceae s.l.
Collapse
|
8
|
Bedoya AM, Ruhfel BR, Philbrick CT, Madriñán S, Bove CP, Mesterházy A, Olmstead RG. Plastid Genomes of Five Species of Riverweeds (Podostemaceae): Structural Organization and Comparative Analysis in Malpighiales. FRONTIERS IN PLANT SCIENCE 2019; 10:1035. [PMID: 31481967 PMCID: PMC6710714 DOI: 10.3389/fpls.2019.01035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/24/2019] [Indexed: 05/21/2023]
Abstract
With the advent of next-generation sequencing technologies, whole-plastome data can be obtained as a byproduct of low-coverage sequencing of the plant genomic DNA. This provides an opportunity to study plastid evolution across groups, as well as testing phylogenetic relationships among taxa. Within the order Malpighiales (∼16,000 spp.), the Podostemaceae (∼300 spp.) stand out for their unique habit, living attached to rocks in fast-flowing aquatic habitats, and displaying highly modified morphologies that confound our understanding of their classification, biology, and evolution. In this study, we used genome skimming data to assemble the full plastid genome of 5 species within Podostemaceae. We analyzed our data in a comparative framework within Malpighiales to determine the structure, gene content, and rearrangements in the plastomes of the family. The Podostemaceae have one of the smallest plastid genomes reported so far for the Malpighiales, possibly due to variation in length of inverted repeat (IR) regions, gene loss, and intergenic region variation. We also detected a major inversion in the large single-copy region unique to the family. The uncommon loss or pseudogenization of ycf1 and ycf2 in angiosperms and in land plants in general is also found to be characteristic of Podostemaceae, but the compensatory mechanisms and implications of this and of the pseudogenization of accD, rpl22, and clpP and loss of rps16 remain to be explained in this group. In addition, we estimated a phylogenetic tree among selected species in Malpighiales. Our findings indicate that the Podostemaceae are a distinct lineage with long branches that suggest faster rates of evolution in the plastome of the group, compared with other taxa in the order. This study lays the foundations for future phylogenomic studies in the family.
Collapse
Affiliation(s)
- Ana M. Bedoya
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, United States
| | - Bradley R. Ruhfel
- University of Michigan Herbarium, University of Michigan, Ann Arbor, MI, United States
| | - C. Thomas Philbrick
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, United States
| | - Santiago Madriñán
- Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Claudia P. Bove
- Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Richard G. Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Development of Plastid Genomic Resources for Discrimination and Classification of Epimedium wushanense (Berberidaceae). Int J Mol Sci 2019; 20:ijms20164003. [PMID: 31426439 PMCID: PMC6720487 DOI: 10.3390/ijms20164003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Epimedium wushanense (Berberidaceae) is recorded as the source plant of Epimedii Wushanensis Folium in the Chinese Pharmacopoeia. However, controversies exist on the classification of E. wushanense and its closely related species, namely, E. pseudowushanense, E. chlorandrum, E. mikinorii, E. ilicifolium, and E. borealiguizhouense. These species are often confused with one another because of their highly similar morphological characteristics. This confusion leads to misuse in the medicinal market threatening efficiency and safety. Here, we studied the plastid genomes of these Epimedium species. Results show that the plastid genomes of E. wushanense and its relative species are typical circular tetramerous structure, with lengths of 156,855–158,251 bp. A total of 112 genes were identified from the Epimedium plastid genomes, including 78 protein-coding, 30 tRNA, and 4 rRNA genes. A loss of rpl32 gene in E. chlorandrum was found for the first time in this study. The phylogenetic trees constructed indicated that E. wushanense can be distinguished from its closely related species. E. wushanense shows a closer relationship to species in ser. Dolichocerae. In conclusion, the use of plastid genomes contributes useful genetic information for identifying medicinally important species E. wushanense and provides new evidence for understanding phylogenetic relationships within the Epimedium genus.
Collapse
|