1
|
Christie K, Pierson NR, Holeski LM, Lowry DB. Resurrected seeds from herbarium specimens reveal rapid evolution of drought resistance in a selfing annual. AMERICAN JOURNAL OF BOTANY 2023; 110:e16265. [PMID: 38102863 DOI: 10.1002/ajb2.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
PREMISE Increased aridity and drought associated with climate change are exerting unprecedented selection pressures on plant populations. Whether populations can rapidly adapt, and which life history traits might confer increased fitness under drought, remain outstanding questions. METHODS We utilized a resurrection ecology approach, leveraging dormant seeds from herbarium collections to assess whether populations of Plantago patagonica from the semi-arid Colorado Plateau have rapidly evolved in response to approximately ten years of intense drought in the region. We quantified multiple traits associated with drought escape and drought resistance and assessed the survival of ancestors and descendants under simulated drought. RESULTS Descendant populations displayed a significant shift in resource allocation, in which they invested less in reproductive tissues and relatively more in both above- and below-ground vegetative tissues. Plants with greater leaf biomass survived longer under terminal drought; moreover, even after accounting for the effect of increased leaf biomass, descendant seedlings survived drought longer than their ancestors. CONCLUSIONS Our results document rapid adaptive evolution in response to climate change in a selfing annual and suggest that shifts in tissue allocation strategies may underlie adaptive responses to drought in arid or semi-arid environments. This work also illustrates a novel approach, documenting that under specific circumstances, seeds from herbarium specimens may provide an untapped source of dormant propagules for future resurrection experiments.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Natalie R Pierson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Liza M Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
- Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
2
|
Vaishnav K, Tiwari V, Durgapal A, Meena B, Rana TS. Estimation of genetic diversity and population genetic structure in Gymnema sylvestre (Retz.) R. Br. ex Schult. populations using DAMD and ISSR markers. J Genet Eng Biotechnol 2023; 21:42. [PMID: 37022506 PMCID: PMC10079795 DOI: 10.1186/s43141-023-00497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Gymnema sylvestre (Retz.) R. Br. ex Schult. is a well-known medicinal plant against diabetes in India. There is as such no organized cultivation in India, and the plant is still being collected from the wild for their therapeutic uses. It is, therefore, important to estimate the genetic diversity and population genetic structure of G. sylvestre to ascertain the genetically diverse germplasm. The present study, therefore, was undertaken to analyze the genetic variability in 118 accessions belonging to 11 wild populations of G. sylvestre using directed amplification of minisatellite-region DNA (DAMD) and inter simple sequence repeats (ISSR). RESULTS The present genetic analyses of 11 populations with 25 markers (8 DAMD and 17 ISSR) revealed significant genetic diversity (H = 0.26, I = 0.40, PPL = 80.89%) at a species level, while the average genetic diversity at the population level was low. Among the 11 populations studied, PCH and UTK populations showed maximum genetic diversity, followed by KNR and AMB, while TEL population revealed the lowest genetic diversity. AMOVA and Gst values (0.18) revealed that most of the genetic variations are found within populations and very less among populations, and higher gene flow (Nm = 2.29) was found to be responsible for the genetic homogenization of the populations. The clustering pattern resulting from the UPGMA dendrogram was in congruence with STRUCTURE and PCoA, segregating all the 11 populations into two main genetic clusters: cluster I (populations of North and Central India) and cluster II (populations of South India). The clustering patterns obtained from all three statistical methods indicate that the genetic structure in G. sylvestre populations corresponds to the geographical diversity of the populations and represents a strong genetic structure. CONCLUSION The genetically diverse populations identified during the present study could be a potential genetic resource for further prospecting and conserving this important plant resource.
Collapse
Affiliation(s)
- Kanchana Vaishnav
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Maharana Pratap Government Degree College, Nanakmatta, Udham Singh Nagar, Kumaun University, Nainital, 263001, Uttarakhand, India
| | - Vandana Tiwari
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anjala Durgapal
- Maharana Pratap Government Degree College, Nanakmatta, Udham Singh Nagar, Kumaun University, Nainital, 263001, Uttarakhand, India
| | - Baleshwar Meena
- CSIR-Traditional Knowledge Digital Library Unit, New Delhi, 110067, India
| | - T S Rana
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Huang R, Liu Y, Chen J, Lu Z, Wang J, He W, Chao Z, Tian E. Limited genetic diversity and high differentiation in Angelica dahurica resulted from domestication: insights to breeding and conservation. BMC PLANT BIOLOGY 2022; 22:141. [PMID: 35331143 PMCID: PMC8953045 DOI: 10.1186/s12870-022-03545-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Angelica dahurica belongs to the Apiaceae family, whose dry root is a famous traditional Chinese medicine named as "Bai zhi". There are two cultivars (A. dahurica cv. 'Hangbaizhi' and A. dahurica cv. 'Qibaizhi'), which have been domesticated for thousands of years. Long term artificial selection has led to great changes in root phenotypes of the two cultivars, and also decreased their adaptability to environment. We proposed hypothesis that the cultivars may have lost some of the genetic diversity found in the wild species and may be highly differentiated from the latter during the domestication process. However, few studies have been carried out on how domestication affected the genetic variation of this species. Here, we accessed the levels of genetic variation and differentiation within and between wild A. dahurica populations and two cultivars using 12 microsatellite markers. RESULTS The results revealed that the genetic diversity of the cultivars was much lower than that of wild A. dahurica, and A. dahurica cv. 'Qibaizhi' had lower genetic diversity compared to A. dahurica cv. 'Hangbaizhi'. AMOVA analysis showed significant genetic differentiation between the wild and cultivated A. dahurica populations, and between A. dahurica cv. 'Hangbaizhi' and A. dahurica cv. 'Qibaizhi'. Results from Bayesian, UPGMA, NJ and PcoA clustering analysis indicated that all 15 populations were assigned to two genetic clusters corresponding to the wild and cultivated populations. Bayesian clustering analysis further divided the cultivated populations into two sub-clusters corresponding to the two cultivars. CONCLUSIONS Our study suggests that the domestication process is likely the major factor resulting in the loss of genetic diversity in cultivated A. dahurica populations and in significant genetic differentiation from the wild populations due to founder effect and/or artificially directional selections. This large-scale analysis of population genetics could provide valuable information for genetic resources conservation and breeding programs of Angelica dahurica.
Collapse
Affiliation(s)
- Rong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yinrong Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jianling Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zuyu Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wei He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| | - Enwei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Fu Q, Deng J, Chen M, Zhong Y, Lu GH, Wang YQ. Population genetic structure and connectivity of a riparian selfing herb Caulokaempferia coenobialis at a fine-scale geographic level in subtropical monsoon forest. BMC PLANT BIOLOGY 2021; 21:329. [PMID: 34238223 PMCID: PMC8265151 DOI: 10.1186/s12870-021-03101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rivers and streams facilitate movement of individuals and their genes across the landscape and are generally recognized as dispersal corridors for riparian plants. Nevertheless, some authors have reported directly contrasting results, which may be attributed to a complex mixture of factors, such as the mating system and dispersal mechanisms of propagules (seed and pollen), that make it difficult to predict the genetic diversity and population structure of riparian species. Here, we investigated a riparian self-fertilizing herb Caulokaempferia coenobialis, which does not use anemochory or zoochory for seed dispersal; such studies could contribute to an improved understanding of the effect of rivers or streams on population genetic diversity and structure in riparian plants. Using polymorphic ISSR and cpDNA loci, we studied the effect at a microgeographic scale of different stream systems (a linear stream, a dendritic stream, and complex transverse hydrological system) in subtropical monsoon forest on the genetic structure and connectivity of C. coenobialis populations across Dinghu Mountain (DH) and Nankun Mountain (NK). RESULTS The results indicate that the most recent haplotypes (DH: H7, H8; NK: h6, h7, h11, h12) are not shared among local populations of C. coenobialis within each stream system. Furthermore, downstream local populations do not accumulate genetic diversity, whether in the linear streamside local populations across DH (H: 0.091 vs 0.136) or the dendritic streamside local populations across NK (H: 0.079 vs 0.112, 0.110). Our results show that the connectivity of local C. coenobialis populations across DH and NK can be attributed to historical gene flows, resulting in a lack of spatial genetic structure, despite self-fertilization. Selfing C. coenobialis can maintain high genetic diversity (H = 0.251; I = 0.382) through genetic differentiation (GST = 0.5915; FST = 0.663), which is intensified by local adaptation and neutral mutation and/or genetic drift in local populations at a microgeographic scale. CONCLUSION We suggest that streams are not acting as corridors for dispersal of C. coenobialis, and conservation strategies for maintaining genetic diversity of selfing species should be focused on the protection of all habitat types, especially isolated fragments in ecosystem processes.
Collapse
Affiliation(s)
- Qiong Fu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yan Zhong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guo-Hui Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ying-Qiang Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
5
|
Huang R, Wang Y, Li K, Wang YQ. Genetic variation and population structure of clonal Zingiber zerumbet at a fine geographic scale: a comparison with two closely related selfing and outcrossing Zingiber species. BMC Ecol Evol 2021; 21:116. [PMID: 34107885 PMCID: PMC8191059 DOI: 10.1186/s12862-021-01853-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There has always been controversy over whether clonal plants have lower genetic diversity than plants that reproduce sexually. These conflicts could be attributed to the fact that few studies have taken into account the mating system of sexually reproducing plants and their phylogenetic distance. Moreover, most clonal plants in these previous studies regularly produce sexual progeny. Here, we describe a study examining the levels of genetic diversity and differentiation within and between local populations of fully clonal Zingiber zerumbet at a microgeographical scale and compare the results with data for the closely related selfing Z. corallinum and outcrossing Z. nudicarpum. Such studies could disentangle the phylogenetic and sexually reproducing effect on genetic variation of clonal plants, and thus contribute to an improved understanding in the clonally reproducing effects on genetic diversity and population structure. RESULTS The results revealed that the level of local population genetic diversity of clonal Z. zerumbet was comparable to that of outcrossing Z. nudicarpum and significantly higher than that of selfing Z. corallinum. However, the level of microgeographic genetic diversity of clonal Z. zerumbet is comparable to that of selfing Z. corallinum and even slightly higher than that of outcrossing Z. nudicarpum. The genetic differentiation among local populations of clonal Z. zerumbet was significantly lower than that of selfing Z. corallinum, but higher than that of outcrossing Z. nudicarpum. A stronger spatial genetic structure appeared within local populations of Z. zerumbet compared with selfing Z. corallinum and outcrossing Z. nudicarpum. CONCLUSIONS Our study shows that fully clonal plants are able not only to maintain a high level of within-population genetic diversity like outcrossing plants, but can also maintain a high level of microgeographic genetic diversity like selfing plant species, probably due to the accumulation of somatic mutations and absence of a capacity for sexual reproduction. We suggest that conservation strategies for the genetic diversity of clonal and selfing plant species should be focused on the protection of all habitat types, especially fragments within ecosystems, while maintenance of large populations is a key to enhance the genetic diversity of outcrossing species.
Collapse
Affiliation(s)
- Rong Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yu Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kuan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ying-Qiang Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Vandermeer J. The meta-Allee effect: A generalization from intermittent metapopulations. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|