1
|
Suetsugu K, Okada H, Hirota SK, Yamasaki M, Imaichi R, Ebihara A. Drastic mycorrhizal community shifts in Sceptridium ferns during the generation transition from fully mycoheterotrophic gametophytes to photosynthetic sporophytes. THE NEW PHYTOLOGIST 2025; 245:1705-1717. [PMID: 39645585 PMCID: PMC11754932 DOI: 10.1111/nph.20330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Many plant species experience a prolonged subterranean phase during which they rely entirely on mycorrhizal fungi for carbon. While this mycoheterotrophic strategy spans liverworts, lycophytes, and ferns, most empirical research has centered on angiosperms. This study explores the fungal associations of Sceptridium (Ophioglossaceae), an early-diverging fern with mycoheterotrophic gametophytes. We analyzed germination patterns and fungal associations in Sceptridium gametophytes, comparing them to the distribution and mycorrhizal partners of photosynthetic sporophytes. High-throughput sequencing data reveal that mycoheterotrophic gametophytes consistently associate with a single Entrophospora fungus in the order Entrophosporales (Glomeromycotina), while photosynthetic sporophytes primarily partner with fungi from Glomeraceae (Glomerales, Glomeromycotina). Consequently, gametophytes exhibit spatial clustering without association with adult plants. This is the first documentation of an association between Entrophosporaceae (and the order Entrophosporales) and mycoheterotrophic plants. The drastic shifts in Sceptridium mycorrhizal communities across life stages likely reflect changing physiological needs during development. Further research is essential to determine whether the association with Entrophosporaceae is widespread among mycoheterotrophic species and to elucidate the functional and physiological mechanisms underlying these mycorrhizal shifts.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of ScienceKobe University1‐1 Rokkodai, Nada‐kuKobeHyogo657‐8501Japan
- Institute for Advanced ResearchKobe University1‐1 Rokkodai, Nada‐kuKobeHyogo657‐8501Japan
| | - Hidehito Okada
- Department of Biology, Graduate School of ScienceKobe University1‐1 Rokkodai, Nada‐kuKobeHyogo657‐8501Japan
| | - Shun K. Hirota
- Botanical GardensOsaka Metropolitan University2000 KisaichiKatanoOsaka576‐0004Japan
| | - Michimasa Yamasaki
- Division of Forest and Biomaterials Science, Graduate School of AgricultureKyoto UniversityKitashirakawa Oiwake‐cho, SakyKyoto606‐8502Japan
| | - Ryoko Imaichi
- Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women's UniversityMejirodaiTokyo112‐8681Japan
| | - Atsushi Ebihara
- Department of BotanyNational Museum of Nature and Science4‐1‐1 AmakuboTsukubaIbaraki305‐0005Japan
| |
Collapse
|
2
|
Zahn FE, Jiang H, Lee YI, Gebauer G. Mode of carbon gain and fungal associations of Neuwiedia malipoensis within the evolutionarily early-diverging orchid subfamily Apostasioideae. ANNALS OF BOTANY 2024; 134:511-520. [PMID: 38912975 PMCID: PMC11341671 DOI: 10.1093/aob/mcae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/22/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND AIMS The earliest-diverging orchid lineage, Apostasioideae, consists only of two genera: Apostasia and Neuwiedia. Previous reports of Apostasia nipponica indicated a symbiotic association with an ectomycorrhiza-forming Ceratobasidiaceae clade and partial utilization of fungal carbon during the adult stage. However, the trophic strategy of Neuwiedia throughout its development remains unidentified. To further improve our understanding of mycoheterotrophy in the Apostasioideae, this study focused on Neuwiedia malipoensis examining both the mycorrhizal association and the physiological ecology of this orchid species across various development stages. METHODS We identified the major mycorrhizal fungi of N. malipoensis protocorm, leafy seedling and adult stages using molecular barcoding. To reveal nutritional resources utilized by N. malipoensis, we compared stable isotope natural abundances (δ13C, δ15N, δ2H, δ18O) of different developmental stages with those of autotrophic reference plants. KEY RESULTS Protocorms exhibited an association with saprotrophic Ceratobasidiaceae rather than ectomycorrhiza-forming Ceratobasidiaceae and the 13C signature was characteristic of their fully mycoheterotrophic nutrition. Seedlings and adults were predominantly associated with saprotrophic fungi belonging to the Tulasnellaceae. While 13C and 2H stable isotope data revealed partial mycoheterotrophy of seedlings, it is unclear to what extent the fungal carbon supply is reduced in adult N. malipoensis. However, the 15N enrichment of mature N. malipoensis suggests partially mycoheterotrophic nutrition. Our data indicated a transition in mycorrhizal partners during ontogenetic development with decreasing dependency of N. malipoensis on fungal nitrogen and carbon. CONCLUSIONS The divergence in mycorrhizal partners between N. malipoensis and A. nipponica indicates different resource acquisition strategies and allows various habitat options in the earliest-diverging orchid lineage, Apostasioideae. While A. nipponica relies on the heterotrophic carbon gain from its ectomycorrhizal fungal partner and thus on forest habitats, N. malipoensis rather relies on own photosynthetic carbon gain as an adult, allowing it to establish in habitats as widely distributed as those where Rhizoctonia fungi occur.
Collapse
Affiliation(s)
- Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Hong Jiang
- Yunnan Laboratory for Conservation of Rare, Endangered & Endemic Forest Plants, National Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, Yunnan, People’s Republic of China
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
3
|
Yagame T, Figura T, Tanaka E, Selosse MA, Yukawa T. Mycobiont identity and light conditions affect belowground morphology and physiology of a mixotrophic orchid Cremastra variabilis (Orchidaceae). MYCORRHIZA 2024; 34:19-31. [PMID: 38381148 DOI: 10.1007/s00572-024-01138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We have investigated whether mycobiont identity and environmental conditions affect morphology and physiology of the chlorophyllous orchid: Cremastra variabilis. This species grows in a broad range of environmental conditions and associates with saprotrophic rhizoctonias including Tulasnellaceae and saprotrophic non-rhizoctonian fungi from the family Psathyrellaceae. We cultured the orchid from seeds under aseptic culture conditions and subsequently inoculated the individuals with either a Tulasnellaceae or a Psathyrellaceae isolate. We observed underground organ development of the inoculated C. variabilis plants and estimated their nutritional dependency on fungi using stable isotope abundance. Coralloid rhizome development was observed in all individuals inoculated with the Psathyrellaceae isolate, and 1-5 shoots per seedling grew from the tip of the coralloid rhizome. In contrast, individuals associated with the Tulasnellaceae isolate did not develop coralloid rhizomes, and only one shoot emerged per plantlet. In darkness, δ13C enrichment was significantly higher with both fungal isolates, whereas δ15N values were only significantly higher in plants associated with the Psathyrellaceae isolate. We conclude that C. variabilis changes its nutritional dependency on fungal symbionts depending on light availability and secondly that the identity of fungal symbiont influences the morphology of underground organs.
Collapse
Affiliation(s)
- Takahiro Yagame
- The Mt. Fuji Institute for Nature and Biology, Showa University, 4562 Kamiyoshida, Fujiyoshida, Yamashi, 403-0005, Japan.
- Division of Academic Resources and Specimens, Hokkaido University Museum, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| | - Tomáš Figura
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, 25243, Průhonice, Czechia
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP, 39, 57 rue Cuvier, F-75005, Paris, France
| | - Eiji Tanaka
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP, 39, 57 rue Cuvier, F-75005, Paris, France
- University of Gdańsk, Faculty of Biology, Department of Vertebrate Ecology and Zoology; ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Institut Universitaire de France, Paris, France
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| |
Collapse
|
4
|
Suetsugu K, Ohta T, Tayasu I. Partial mycoheterotrophy in the leafless orchid Eulophia zollingeri specialized on wood-decaying fungi. MYCORRHIZA 2024; 34:33-44. [PMID: 38520554 DOI: 10.1007/s00572-024-01136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024]
Abstract
Although the absence of normal leaves is often considered a sign of full heterotrophy, some plants remain at least partially autotrophic despite their leafless habit. Leafless orchids with green stems and capsules probably represent a late evolutionary stage toward full mycoheterotrophy and serve as valuable models for understanding the pathways leading to this nutritional strategy. In this study, based on molecular barcoding and isotopic analysis, we explored the physiological ecology of the leafless orchid Eulophia zollingeri, which displays green coloration, particularly during its fruiting phase. Although previous studies had shown that E. zollingeri, in its adult stage, is associated with Psathyrellaceae fungi and exhibits high 13C isotope signatures similar to fully mycoheterotrophic orchids, it remained uncertain whether this symbiotic relationship is consistent throughout the orchid's entire life cycle and whether the orchid relies exclusively on mycoheterotrophy for its nutrition during the fruiting season. Our study has demonstrated that E. zollingeri maintains a specialized symbiotic relationship with Psathyrellaceae fungi throughout all life stages. However, isotopic analysis and chlorophyll data have shown that the orchid also engages in photosynthesis to meet its carbon needs, particularly during the fruiting stage. This research constitutes the first discovery of partial mycoheterotrophy in leafless orchids associated with saprotrophic non-rhizoctonia fungi.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
- Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tamihisa Ohta
- Faculty of Science, Academic Assembly, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature, 457-4 Motoyama Kamigamo, Kita-Ku, Kyoto, 603-8047, Japan
| |
Collapse
|
5
|
Fernández M, Kaur J, Sharma J. Co-occurring epiphytic orchids have specialized mycorrhizal fungal niches that are also linked to ontogeny. MYCORRHIZA 2023; 33:87-105. [PMID: 36651985 DOI: 10.1007/s00572-022-01099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Mycorrhizal symbiosis has been related to the coexistence and community assembly of coexisting orchids in few studies despite their obligate dependence on mycorrhizal partners to establish and survive. In hyper-diverse environments like tropical rain forests, coexistence of epiphytic orchids may be facilitated through mycorrhizal fungal specialization (i.e., sets of unique and dominant mycorrhizal fungi associated with a particular host species). However, information on the role of orchid mycorrhizal fungi (OMF) in niche differentiation and coexistence of epiphytic orchids is still scarce. In this study, we sought to identify the variation in fungal preferences of four co-occurring epiphytic orchids in a tropical rainforest in Costa Rica by addressing the identity and composition of their endophytic fungal and OMF communities across species and life stages. We show that the endophytic fungal communities are formed mainly of previously recognized OMF taxa, and that the four coexisting orchid species have both a set of shared mycorrhizal fungi and a group of fungi unique to an orchid species. We also found that adult plants keep the OMF of the juvenile stage while adding new mycobionts over time. This study provides evidence for the utilization of specific OMF that may be involved in niche segregation, and for an aggregation mechanism where adult orchids keep initial fungal mycobionts of the juvenile stage while adding others.
Collapse
Affiliation(s)
- Melania Fernández
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
- Lankester Botanical Garden, University of Costa Rica, Cartago, 30109, Costa Rica.
- Herbarium UCH, Universidad Autónoma de Chiriquí, David, Chiriquí, Panama.
| | - Jaspreet Kaur
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|