1
|
Kim DH, Kim DS, Ha HJ, Jung JW, Baek SW, Baek SH, Kim TH, Lee JC, Hwang E, Han DK. Fat Graft with Allograft Adipose Matrix and Magnesium Hydroxide-Incorporated PLGA Microspheres for Effective Soft Tissue Reconstruction. Tissue Eng Regen Med 2022; 19:553-563. [PMID: 35312988 PMCID: PMC9130390 DOI: 10.1007/s13770-021-00426-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Autologous fat grafting is one of the most common procedures used in plastic surgery to correct soft tissue deficiency or depression deformity. However, its clinical outcomes are often suboptimal, and lack of metabolic and architectural support at recipient sites affect fat survival leading to complications such as cyst formation, calcification. Extracellular matrix-based scaffolds, such as allograft adipose matrix (AAM) and poly(lactic-co-glycolic) acid (PLGA), have shown exceptional clinical promise as regenerative scaffolds. Magnesium hydroxide (MH), an alkaline ceramic, has attracted attention as a potential additive to improve biocompatibility. We attempted to combine fat graft with regenerative scaffolds and analyzed the changes and viability of injected fat graft in relation to the effects of injectable natural, and synthetic (PLGA/MH microsphere) biomaterials. METHODS In vitro cell cytotoxicity, angiogenesis of the scaffolds, and wound healing were evaluated using human dermal fibroblast cells. Subcutaneous soft-tissue integration of harvested fat tissue was investigated in vivo in nude mouse with random fat transfer protocol Fat integrity and angiogenesis were identified by qRT-PCR and immunohistochemistry. RESULTS In vitro cell cytotoxicity was not observed both in AAM and PLGA/MH with human dermal fibroblast. PLGA/MH and AAM showed excellent wound healing effect. In vivo, the AAM and PLGA/MH retained volume compared to that in the only fat group. And the PLGA/MH showed the highest angiogenesis and anti-inflammation. CONCLUSION In this study, a comparison of the volume retention effect and angiogenic ability between autologous fat grafting, injectable natural, and synthetic biomaterials will provide a reasonable basis for fat grafting.
Collapse
Affiliation(s)
- Dae-Hee Kim
- Department of Biomedical Engineering, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Hyun-Jeong Ha
- Department of Plastic and Reconstructive Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, Republic of Korea
| | - Seung Hwa Baek
- CHA Advanced Research Institute Center for Research & Development, Histological Analysis Team, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Euna Hwang
- Department of Plastic and Reconstructive Surgery, CHA Gangnam Medical Center, 566 Nonhyun-ro, Gangnam-gu, Seoul, 06135, Republic of Korea.
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, 13488, Republic of Korea.
| |
Collapse
|