1
|
Su X, Hu J, Jiang F, Wu Y, He J, Jia X, Zhan S. Evaluation of pathogen distribution and antimicrobial resistance in breast plastic surgery infection. J Cosmet Dermatol 2024; 23:179-185. [PMID: 37409445 DOI: 10.1111/jocd.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The demand for mammaplasty has increased in recent years, and infection remains one of the common and serious post-operative complications. In this study, we analyzed the pathogen distribution and antibiotic susceptibility of breast plastic surgery infections, and compared the differences in pathogenic species between surgical procedures. METHODS The number of each species was counted in the microbial samples of breast plastic surgery infections in Plastic Surgery Hospital of Chinese Academy of Medical Sciences from January 2011 to December 2021. The in vitro antibiotic sensitivity testing data were analyzed using WHONET 5.6 software. The surgical techniques, the period of infection, and other details were gathered in accordance with the clinical data. RESULTS There were a total of 42 cases included, and 43 different types of pathogenic bacteria, mostly gram-positive bacteria, were found. CoNS (13/43) and Staphylococcus aureus (22/43) made up the majority. The most prevalent of the five Gram-negative bacteria was Pseudomonas aeruginosa. Results of drug sensitivity tests indicate that S. aureus is highly sensitive to vancomycin, cotrimoxazole, and linezolid, whereas CoNS is highly sensitive to vancomycin, linezolid, and chloramphenicol. Both of these bacteria show high resistance to erythromycin and penicillin. Breast augmentation, breast reconstruction, and breast reduction surgery were the most frequently associated breast surgery procedures in this study with infections, with the highest number of infections occurring following breast augmentation with fat grafting, breast reduction surgery, and breast reconstruction with autologous tissue. Various breast plastic surgery procedures have different common pathogens of infection, but the most prevalent are CoNS and S. aureus. Additionally, the majority of the infections in this study were in the early stages. CONCLUSIONS Gram-positive bacteria were the predominant cause of breast plastic surgery infections, and the types of infection strains, the period of infection onset, and the antibiotic susceptibility of prevalent strains varied between breast plastic procedures.
Collapse
Affiliation(s)
- Xueshang Su
- Department of Cicatrix Minimally Invasive Treatment Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jintian Hu
- Department of Cicatrix Minimally Invasive Treatment Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengli Jiang
- Department of Medical Laboratory, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Wu
- Department of Medical Laboratory, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing He
- Department of Medical Laboratory, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ximeng Jia
- Department of Cicatrix Minimally Invasive Treatment Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sien Zhan
- Department of Medical Laboratory, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Walker JN, Hanson BM, Hunter T, Simar SR, Duran Ramirez JM, Obernuefemann CLP, Parikh RP, Tenenbaum MM, Margenthaler JA, Hultgren SJ, Myckatyn TM. A prospective randomized clinical trial to assess antibiotic pocket irrigation on tissue expander breast reconstruction. Microbiol Spectr 2023; 11:e0143023. [PMID: 37754546 PMCID: PMC10581127 DOI: 10.1128/spectrum.01430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial infection is the most common complication following staged post-mastectomy breast reconstruction initiated with a tissue expander (TE). To limit bacterial infection, antibiotic irrigation of the surgical site is commonly performed despite little high-quality data to support this practice. We performed a prospective randomized control trial to compare the impact of saline irrigation alone to a triple antibiotic irrigation regimen (1 g cefazolin, 80 mg gentamicin, and 50,000 units of bacitracin in 500 mL of saline) for breast implant surgery. The microbiome in breasts with cancer (n = 16) was compared to those without (n = 16), as all patients (n = 16) had unilateral cancers but bilateral mastectomies (n = 32). Biologic and prosthetic specimens procured both at the time of mastectomy and during TE removal months later were analyzed for longitudinal comparison. Outcomes included clinical infection, bacterial abundance, and relative microbiome composition. No patient in either group suffered a reconstructive failure or developed an infection. Triple antibiotic irrigation administered at the time of immediate TE reconstruction did not reduce bacterial abundance or impact microbial diversity relative to saline irrigation at the time of planned exchange. Implanted prosthetic material adopted the microbial composition of the surrounding host tissue. In cancer-naïve breasts, relative to saline, antibiotic irrigation increased bacterial abundance on periprosthetic capsules (P = 0.03) and acellular dermal matrices (P = 0.04) and altered the microbiota on both. These data show that, relative to saline only, the use of triple antibiotic irrigation in TE breast reconstruction does impact the bacterial abundance and diversity of certain biomaterials from cancer-naïve breasts. IMPORTANCE The lifetime risk of breast cancer is ~13% in women and is treated with a mastectomy in ~50% of cases. The majority are reconstructed, usually starting with a tissue expander to help restore the volume for a subsequent permanent breast implant or the women's own tissues. The biopsychosocial benefits of breast reconstruction, though, can be tempered by a high complication rate of at least 7% but over 30% in some women. Bacterial infection is the most common complication, and can lead to treatment delays, patient physical and emotional distress and escalating health care cost. To limit this risk, plastic surgeons have tried a variety of strategies to limit bacterial infection including irrigating the pocket created after removing the breast implant with antibiotic solutions, but good-quality data are scarce. Herein, we study the value of antibiotics in pocket irrigation using a robust randomized clinical trial design and molecular microbiology approaches.
Collapse
Affiliation(s)
- Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Tayler Hunter
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Shelby R. Simar
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rajiv P. Parikh
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Marissa M. Tenenbaum
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie A. Margenthaler
- Division of Surgical Oncology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Duran Ramirez JM, Gomez J, Hanson BM, Isa T, Myckatyn TM, Walker JN. Staphylococcus aureus Breast Implant Infection Isolates Display Recalcitrance To Antibiotic Pocket Irrigants. Microbiol Spectr 2023; 11:e0288422. [PMID: 36507629 PMCID: PMC9927092 DOI: 10.1128/spectrum.02884-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Breast implant-associated infections (BIAIs) are the primary complication following placement of breast prostheses in breast cancer reconstruction. Given the prevalence of breast cancer, reconstructive failure due to infection results in significant patient distress and health care expenditures. Thus, effective BIAI prevention strategies are urgently needed. This study tests the efficacy of one infection prevention strategy: the use of a triple antibiotic pocket irrigant (TAPI) against Staphylococcus aureus, the most common cause of BIAIs. TAPI, which consists of 50,000 U bacitracin, 1 g cefazolin, and 80 mg gentamicin diluted in 500 mL of saline, is used to irrigate the breast implant pocket during surgery. We used in vitro and in vivo assays to test the efficacy of each antibiotic in TAPI, as well as TAPI at the concentration used during surgery. We found that planktonically grown S. aureus BIAI isolates displayed susceptibility to gentamicin, cefazolin, and TAPI. However, TAPI treatment enhanced biofilm formation of BIAI strains. Furthermore, we compared TAPI treatment of a S. aureus reference strain (JE2) to a BIAI isolate (117) in a mouse BIAI model. TAPI significantly reduced infection of JE2 at 1 and 7 days postinfection (dpi). In contrast, BIAI strain 117 displayed high bacterial burdens in tissues and implants, which persisted to 14 dpi despite TAPI treatment. Lastly, we demonstrated that TAPI was effective against Pseudomonas aeruginosa reference (PAO1) and BIAI strains in vitro and in vivo. Together, these data suggest that S. aureus BIAI strains employ unique mechanisms to resist antibiotic prophylaxis treatment and promote chronic infection. IMPORTANCE The incidence of breast implant associated infections (BIAIs) following reconstructive surgery postmastectomy remains high, despite the use of prophylactic antibiotic strategies. Thus, surgeons have begun using additional antibiotic-based prevention strategies, including triple antibiotic pocket irrigants (TAPIs). However, these strategies fail to reduce BIAI rates for these patients. To understand why these therapies fail, we assessed the antimicrobial resistance patterns of Staphylococcus aureus strains, the most common cause of BIAI, to the antibiotics in TAPI (bacitracin, cefazolin, and gentamicin). We found that while clinically relevant BIAI isolates were more susceptible to the individual antibiotics compared to a reference strain, TAPI was effective at killing all the strains in vitro. However, in a mouse model, the BIAI isolates displayed recalcitrance to TAPI, which contrasted with the reference strain, which was susceptible. These data suggest that strains causing BIAI may encode specific recalcitrance mechanisms not present within reference strains.
Collapse
Affiliation(s)
- Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - Jana Gomez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Taha Isa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
4
|
Huang L, Lu W, Ning Y, Liu J. Reverse effects of Streptococcus mutans physiological states on neutrophil extracellular traps formation as a strategy to escape neutrophil killing. Front Cell Infect Microbiol 2022; 12:1023457. [PMID: 36439223 PMCID: PMC9687095 DOI: 10.3389/fcimb.2022.1023457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 03/07/2024] Open
Abstract
Bacteria in nature are present in different lifestyles with distinct characteristics. Streptococcus mutans is the etiologic pathogen of dental caries and could easily gain access into the bloodstream after oral surgery and adopt a biofilm lifestyle, resulting in infective endocarditis. A growing amount of evidence have revealed that the large web-like structure composed of extracellular DNA and antimicrobial proteins released by neutrophils, named Neutrophil Extracellular Traps (NETs), play an active role in the defense against bacterial invasion. The present study demonstrated that NETs formation was discriminatively affected by S. mutans biofilm and its planktonic counterpart. The free-floating planktonic S. mutans exhibited an active NETs response, whereas the biofilm community exhibited a reverse negative NETs response. Besides, impaired biofilm killing correlated with the decrease in NETs production. Unlike planktonic cells, biofilm avoided the burst of reactive oxygen species (ROS) when co-culture with neutrophils, and the NADPH-oxidase pathway was partially involved. A mice infection model also supported the distinguishing response of neutrophils challenged by different lifestyles of S. mutans. In conclusion, different bacterial physiological states can affect the distinct response of the host-microbe interaction, thus contributing to the anti-pathogen immune response activation and immune surveillance survival.
Collapse
Affiliation(s)
- Lijia Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong, Guangzhou, China
| | - Yang Ning
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| |
Collapse
|
5
|
Chang C, Yu X, Guo W, Guo C, Guo X, Li Q, Zhu Y. Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Front Microbiol 2022; 13:825828. [PMID: 35495689 PMCID: PMC9048899 DOI: 10.3389/fmicb.2022.825828] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Biofilms are complex microbial microcolonies consisting of planktonic and dormant bacteria bound to a surface. The bacterial cells within the biofilm are embedded within the extracellular polymeric substance (EPS) consisting mainly of exopolysaccharides, secreted proteins, lipids, and extracellular DNA. This structural matrix poses a major challenge against common treatment options due to its extensive antibiotic-resistant properties. Because biofilms are so recalcitrant to antibiotics, they pose a unique challenge to patients in a nosocomial setting, mainly linked to lower respiratory, urinary tract, and surgical wound infections as well as the medical devices used during treatment. Another unique property of biofilm is its ability to adhere to both biological and man-made surfaces, allowing growth on human tissues and organs, hospital tools, and medical devices, etc. Based on prior understanding of bacteriophage structure, mechanisms, and its effects on bacteria eradication, leading research has been conducted on the effects of phages and its individual proteins on biofilm and its role in overall biofilm removal while also revealing the obstacles this form of treatment currently have. The expansion in the phage host-species range is one that urges for improvement and is the focus for future studies. This review aims to demonstrate the advantages and challenges of bacteriophage and its components on biofilm removal, as well as potential usage of phage cocktail, combination therapy, and genetically modified phages in a clinical setting.
Collapse
Affiliation(s)
- Cheng Chang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Xinbo Yu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wennan Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Chaoyi Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| |
Collapse
|
6
|
Dhanagovind PT, Kujur PK, Swain RK, Banerjee S. IL-6 Signaling Protects Zebrafish Larvae during Staphylococcus epidermidis Infection in a Bath Immersion Model. THE JOURNAL OF IMMUNOLOGY 2021; 207:2129-2142. [PMID: 34544800 DOI: 10.4049/jimmunol.2000714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
The host immune responses to Staphylococcus epidermidis, a frequent cause of nosocomial infections, are not well understood. We have established a bath immersion model of this infection in zebrafish (Danio rerio) larvae. Macrophages play a primary role in the host immune response and are involved in clearance of infection in the larvae. S. epidermidis infection results in upregulation of tlr-2 There is marked inflammation characterized by heightened NF-κB signaling and elevation of several proinflammatory cytokines. There is rapid upregulation of il-1b and tnf-a transcripts, whereas an increase in il-6 levels is relatively more delayed. The IL-6 signaling pathway is further amplified by elevation of IL-6 signal transducer (il-6st) levels, which negatively correlates with miRNA dre-miR-142a-5p. Enhanced IL-6 signaling is protective to the host in this model as inhibition of the signaling pathway resulted in increased mortality upon S. epidermidis infection. Our study describes the host immune responses to S. epidermidis infection, establishes the importance of IL-6 signaling, and identifies a potential role of miR-142-5p-il-6st interaction in this infection model.
Collapse
Affiliation(s)
- P Thamarasseri Dhanagovind
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| | - Prabeer K Kujur
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| | | | - Sanjita Banerjee
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| |
Collapse
|
7
|
Atiyeh BS, Costagliola M, Rampillon F, Chahine F. Comment on Plane Change Versus Capsulotomy: A Comparison of Treatments for Capsular Contraction in Breast Augmentation Using the Subfascial Plane. Aesthetic Plast Surg 2021; 45:1360-1362. [PMID: 33399952 DOI: 10.1007/s00266-020-02072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Bishara S Atiyeh
- Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Michel Costagliola
- Faculté de Médecine Toulouse-Rangueil, Pr Emérite-Chirurgie Réparatrice et Esthétique, Toulouse, France
| | | | | |
Collapse
|
8
|
Monib S, Thomson S. Breast Cancer in the Presence of Failed Saline Breast Implants. Cureus 2021; 13:e14204. [PMID: 33936908 PMCID: PMC8086050 DOI: 10.7759/cureus.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Breast augmentation has been gaining popularity over the last two decades to correct congenital breast asymmetry or increase breast size and projection. Augmentation options started with saline implants, then silicone implants, and, recently, autologous fat transfer. Unfortunately, breast implants are not without complications, some of which are common, like capsular contracture, implant failure and infection. Others are quite rare, such as Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL). Most of these complications will eventually require explantation in most cases, as the patients’ and implants' age and risk of complications increase. We present a 79-year-old patient who presented to our breast unit with a left breast lump with 50-year-old saline implants. A triple assessment revealed incidental right breast cancer treated with radiofrequency identification (RFID) tag-guided wide local excision, sentinel lymph node biopsy and bilateral explantation.
Collapse
Affiliation(s)
- Sherif Monib
- Breast Surgery, West Hertfordshire Hospitals NHS Trust, St. Albans, GBR
| | - Simon Thomson
- Breast Surgery, West Hertfordshire Hospitals NHS Trust, St. Albans, GBR
| |
Collapse
|
9
|
Mohammed AK, Monib S. Failure of an Ancient Breast Implant Can Lead to Significant Morbidity. Cureus 2021; 13:e13700. [PMID: 33833920 DOI: 10.7759/cureus.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Implant-based breast reconstruction is the most popular reconstruction option following mastectomy. However, it is not without complications, some of which can be trivial while others can lead to significant morbidity, especially in geriatric patients. Severe capsular contracture, implant failure, infection, or suspected breast implant-associated anaplastic large cell lymphoma are examples of complications that will eventually require explantation in most cases. As patients with implant-based reconstruction age, the risk of complications increases, which should be considered by treating physicians. We describe the case of a 90-year-old patient who presented to our emergency department after a fall with worsening confusion, which was attributed to a 60-year-old left breast implant rupture and a peri-implant infected hematoma confirmed with CT and ultrasound.
Collapse
Affiliation(s)
| | - Sherif Monib
- Breast Surgery, St. Albans and Watford General Hospitals, West Hertfordshire Hospitals NHS Trust, London, GBR
| |
Collapse
|
10
|
Deva AK. Commentary on: Establishment and Characterization of Bacterial Infection of Breast Implants in a Murine Model. Aesthet Surg J 2020; 40:529-530. [PMID: 31605527 DOI: 10.1093/asj/sjz251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anand K Deva
- Department of Plastic and Reconstructive Surgery, Macquarie University, Sydney, Australia
| |
Collapse
|