1
|
Zhang Q, Guo S, Ge H, Wang H. The protective role of baicalin regulation of autophagy in cancers. Cytotechnology 2025; 77:33. [PMID: 39760060 PMCID: PMC11699138 DOI: 10.1007/s10616-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis. The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Hangwei Ge
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
2
|
Aidiel M, Abdul Mutalib M, Ramasamy R, Nik Ramli NN, Tang SGH, Adam SH. Mechanistic Insights into the Anticancer Potential of Methoxyflavones Analogs: A Review. Molecules 2025; 30:346. [PMID: 39860214 PMCID: PMC11768088 DOI: 10.3390/molecules30020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
2-phenylchromen-4-one, commonly known as flavone, plays multifaceted roles in biological response that can be abundantly present in natural sources. The methoxy group in naturally occurring flavones promotes cytotoxic activity in various cancer cell lines by targeting protein markers, in facilitating ligand-protein binding mechanisms and activating cascading downstream signaling pathways leading to cell death. However, the lipophilic nature of these analogs is a key concern as it impacts drug membrane transfer. While lipophilicity is crucial for drug efficacy, the excessive lipophilic effects in flavonoids can reduce water solubility and hinder drug transport to target sites. Recent in vitro studies suggest that the incorporation of polar hydroxyl groups which can form hydrogen bonds and stabilize free radicals may help overcome the challenges associated with methoxy groups while maintaining their essential lipophilic properties. Naturally coexisting with methoxyflavones, this review explores the synergistic role of hydroxy and methoxy moieties through hydrogen bonding capacity in maximizing cytotoxicity against cancer cell lines. The physicochemical analysis revealed the potential intramolecular interaction and favorable electron delocalization region between both moieties to improve cytotoxicity levels. Together, the analysis provides a useful strategy for the structure-activity relationship (SAR) of flavonoid analogs in distinct protein markers, suggesting optimal functional group positioning to achieve balanced lipophilicity, effective hydrogen bonding, and simultaneously minimized steric hindrance in targeting specific cancer cell types.
Collapse
Affiliation(s)
- Mohammad Aidiel
- School of Graduate Studies, Management & Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (M.A.); (N.N.N.R.)
| | - Maisarah Abdul Mutalib
- School of Graduate Studies, Management & Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (M.A.); (N.N.N.R.)
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Nik Nasihah Nik Ramli
- School of Graduate Studies, Management & Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (M.A.); (N.N.N.R.)
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|
3
|
Zhu JR, Zhu WJ, Li T, Ou JP. Autophagy activity is increased in the cumulus cells of women with poor ovarian response. Taiwan J Obstet Gynecol 2024; 63:205-213. [PMID: 38485316 DOI: 10.1016/j.tjog.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE To evaluate the autophagy status of cumulus cells (CCs) in women with poor ovarian response (POR). MATERIALS AND METHODS CCs were divided into normal ovarian response (NOR) group and POR group. The ultrastructure of autophagy was analyzed by transmission electron microscopy (NOR: n = 18, POR: n = 26). The mRNA and protein of autophagy markers were detected by Quantitative real-time polymerase chain reaction (NOR: n = 15, POR: n = 19) and Western blotting (NOR: n = 41, POR: n = 38), respectively. RESULTS Transmission electron microscopy demonstrated abundant autophagosomes and even autophagic death in the POR group. There were no differences in LC3 and P62 mRNA expression between the two groups (p > 0.05). The BCL2 mRNA expression was lower in the POR group (p < 0.05). Moreover, the LC3 II/I ratio and the P62 protein expression were significantly higher in the POR group (p < 0.05). CONCLUSIONS Autophagy in CCs of POR women is activated and the autophagic flux is blocked. The up-regulation of autophagy in CCs may be related to the pathogenesis of POR.
Collapse
Affiliation(s)
- Jie-Ru Zhu
- Center for Reproductive Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei-Jie Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Tao Li
- Center for Reproductive Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian-Ping Ou
- Center for Reproductive Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
4
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|