1
|
Januario M, Macedo-Rego RC, Rabosky DL. Evolutionary Lability of Sexual Selection and Its Implications for Speciation and Macroevolution. Am Nat 2025; 205:388-412. [PMID: 40179428 DOI: 10.1086/734457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
AbstractSexual selection is widely hypothesized to facilitate speciation and phenotypic evolution, but evidence from comparative studies has been mixed. Many previous studies have relied on proxy variables to quantify the intensity of sexual selection, raising the possibility that inconclusive results may reflect, in part, the imperfect measurement of this evolutionary process. Here, we test the relationship between phylogenetic speciation rates and indices of the opportunity for sexual selection drawn from populations of 82 vertebrate taxa. These indices provide a much more direct assessment of sexual selection intensity than proxy traits and allow straightforward comparisons among distantly related clades. We find no correlation between the opportunity for sexual selection and speciation rate, and this result is consistent across many complementary analyses. In addition, widely used proxy variables-sexual dimorphism and dichromatism-are not correlated with the indices employed here. Moreover, we find that the opportunity for sexual selection has low phylogenetic signal and that intraspecific variability in selection indices for many species approaches the range of variation observed across all vertebrates as a whole. Our results potentially reconcile a major paradox in speciation biology at the interface between microevolution and macroevolution: sexual selection can be important for speciation, yet the evolutionary lability of the process over deeper timescales restricts its impact on broad-scale patterns of biodiversity.
Collapse
|
2
|
Schnürmacher R, Vanden Eynde R, Creemers J, Ulenaers E, Eens M, Evens R, Lathouwers M. Achromatic Markings as Male Quality Indicators in a Crepuscular Bird. BIOLOGY 2025; 14:298. [PMID: 40136553 PMCID: PMC11940135 DOI: 10.3390/biology14030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Secondary sexual traits, such as specific body parts or colouration, play an important role in mating interactions. It has been proposed that they function as quality indicators driven by sexual selection. In birds, much attention has been paid to the study of feather pigmentation, especially in diurnal passerines. However, recent research demonstrates that structural achromatic colours are likely to be of similar importance for communication, especially for species inhabiting poorly lit environments and that are active at night. Using 15 years of capture-recapture data from a long-term study on adult European Nightjars (Caprimulgus europaeus), we investigated the role of males' white tail and wing markings as secondary sexual traits. We show that the inter-individual variation in marking size exceeds that of the other morphometric variables, suggesting that wing and tail markings could be subject to sexual selection. Older males, individuals with a higher body condition index, and long-term territory holders had larger markings, while these effects were particularly pronounced in terminal tail feather markings. The importance of markings for signalling is likely related to their observed use in social displays. Pronounced site differences in tail marking sizes and annual variation suggest environmental factors acting on the ornaments that remain to be further examined.
Collapse
Affiliation(s)
- Richard Schnürmacher
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (J.C.); (M.E.); (R.E.)
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Rhune Vanden Eynde
- Research Group: Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium; (R.V.E.); (M.L.)
| | - Jitse Creemers
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (J.C.); (M.E.); (R.E.)
- Terrestrial Ecology and Biodiversity Conservation Group, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Eddy Ulenaers
- Agentschap Natuur en Bos, Regio Noord-Limburg, Heuvelstraat 1C, 3941 Hechel-Eksel, Belgium;
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (J.C.); (M.E.); (R.E.)
| | - Ruben Evens
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (J.C.); (M.E.); (R.E.)
- Terrestrial Ecology and Biodiversity Conservation Group, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Michiel Lathouwers
- Research Group: Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium; (R.V.E.); (M.L.)
- Department of Geography, Institute of Life, Earth and Environment (ILEE), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|
3
|
Robayo Noguera L, Stevenson CAL, Wang T, Pasquale MK, Branch CL. Variation in plumage reflectance but not song reflects spatial cognitive performance in black-capped chickadees (Poecile atricapillus). Anim Cogn 2025; 28:14. [PMID: 39969633 PMCID: PMC11839785 DOI: 10.1007/s10071-025-01935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
In seasonally variable environments, enhanced cognitive abilities may allow animals to adjust their behavior to changing conditions. Nonmigratory food-caching birds, like chickadees, rely on specialized spatial cognition to successfully cache and retrieve food items and survive the winter. Previous studies have linked spatial cognitive performance in chickadees to enhanced fitness, including survival and reproduction; however, it remains unknown whether females assess male cognitive ability via direct observation or secondary sexual traits. In this study, we investigated whether variation in common secondary sexual traits of songbirds, song and plumage, serve as indicators of cognitive ability in black-capped chickadees (Poecile atricapillus) when accounting for dominance rank. To explore this, we brought wild male black-capped chickadees into captivity, tested their performance in three spatial cognitive abilities (spatial learning, cognitive flexibility, and long-term retention), determined the relative social dominance ranks among all individuals, measured plumage reflectance in six body regions, and recorded their fee-bee songs to assess the relationship between these variables. Our findings show that birds with brighter white plumage and greater contrast between black and white plumage patches showed better spatial learning and memory performance. In contrast, we found no significant associations between cognitive performance and song variation. Our results suggest that females may use some secondary sexual traits as signals for cognitive performance, although, we suggest direct observation may also be important for mate choice involving cognitive ability in chickadees. This work provides insights into female mating decisions, highlighting the complex nature of sexual selection and female preferences.
Collapse
Affiliation(s)
| | | | - Tianconghui Wang
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Matteo K Pasquale
- Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Carrie L Branch
- Department of Psychology, University of Western Ontario, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
4
|
Roterman CN, McArthur M, Laverty Baralle C, Marsh L, Copley JT. Yeti claws: Cheliped sexual dimorphism and symmetry in deep-sea yeti crabs (Kiwaidae). PLoS One 2025; 20:e0314320. [PMID: 39908246 DOI: 10.1371/journal.pone.0314320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/07/2024] [Indexed: 02/07/2025] Open
Abstract
Yeti crabs (Kiwaidae) are deep-sea hydrothermal vent and methane seep dwelling crustaceans that farm chemosynthetic microbes on their bodies. Sexual dimorphism is a common feature of decapod crustaceans, but little is known about its prevalence in species from deep-sea habitats. We address this knowledge deficit by investigating claw sexual dimorphism and symmetry in the hydrothermal-vent endemic 'Hoff crab', Kiwa tyleri. A total of 135 specimens from the East Scotia Ridge were examined, revealing mean asymmetry indices close to zero with respect to propodus length and height, albeit with a significantly larger number of marginally left-dominant individuals with respect to propodus length, possibly indicative of some task specialisation between claws, or a vestigial ancestral trait. Both male and female claws exhibit positive allometry with increasing carapace length, but males possess significantly larger claws compared with females when accounting for carapace size, exhibiting faster growing propodus length, and broader propodus heights throughout the size distribution. This marked difference is indicative of either male-male competition for mate access, sexual selection, or differential energy allocation (growth vs reproduction) between males and females, as observed in other decapod crustaceans. In contrast, a reanalysis of data for the methane seep inhabiting yeti crab Kiwa puravida revealed no significant difference in claw allometry, indicating a possible lack of similar sexual selection pressures, and highlighting potential key differences in the ecological and reproductive strategies of K. tyleri and K. puravida relating to claw function, microbial productivity and population density. Whether sex differences in claw allometry represents the norm or the exception in Kiwaidae will require the examination of other species in the family. This research enhances our understanding of the behaviour, ecology and evolution of yeti crabs, providing a basis for future studies.
Collapse
Affiliation(s)
| | - Molly McArthur
- Institute of Marine Science, University of Portsmouth, Portsmouth, United Kingdom
| | | | - Leigh Marsh
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Jon T Copley
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| |
Collapse
|
5
|
Zeidler T, Ros A, Roch S, Jacobs A, Geist J, Brinker A. Non-random mating behaviour between diverging littoral and pelagic three-spined sticklebacks in an invasive population from Upper Lake Constance. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241252. [PMID: 39816745 PMCID: PMC11732402 DOI: 10.1098/rsos.241252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback (Gasterosteus aculeatus) is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males. Behaviour was recorded, and data on traits relevant to mate choice were collected. Both females of the same and different ecotypes were courted with equal vigour. However, there was a significant interaction effect of male and female ecotypes on the level of aggression in females. Littoral females were more aggressive towards pelagic males, and pelagic females were more aggressive towards littoral males. This indicates rejection of males of different ecotypes in spite of the fact that littoral males were larger, more intensely red-coloured and more aggressive than the pelagic males-all mating traits female sticklebacks generally select for. This study documents the emergence of behavioural barriers during early divergence in an invasive and rapidly diversifying stickleback population and discusses their putative role in facilitating reproductive isolation and adaptive radiation within this species.
Collapse
Affiliation(s)
- Tobias Zeidler
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Albert Ros
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Samuel Roch
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Arne Jacobs
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, GlasgowG12 8QQ, UK
| | - Juergen Geist
- Department of Life Science Systems, Aquatic Systems Biology Unit, Technical University of Munich, TUM School of Life Sciences, Mühlenweg 22, 85354 Freising, Germany
| | - Alexander Brinker
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
- University of Constance, Institute for Limnology, Mainaustraße 252, 78464 Konstanz, Germany
| |
Collapse
|
6
|
Kawakami R, Matsumura K. Influences of aging and mating history in males on paternity success in the red flour beetle Tribolium castaneum. PLoS One 2024; 19:e0316008. [PMID: 39715202 DOI: 10.1371/journal.pone.0316008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
The investment of males in reproductive traits is often associated with their age. For example, several empirical and theoretical studies have demonstrated that older males make greater investment in reproduction compared with younger males. However, with regards to post-copulatory sexual selection, male reproductive success might be influenced by decreasing sperm quality with male age and the interaction between aging and mating experience in males. However, only a few studies that investigated influences of male aging as well as male mating experience on their post-copulatory sexual selection. In this study, we investigated paternity success influenced by the post-copulatory sexual selection of males at different ages in the red flour beetle Tribolium castaneum. To investigate the effects of the mating experience, the paternity success of older males who had experienced multiple matings (mated male) was compared with older males who had not experienced mating (naive male). The results of this study revealed that paternity success was not affected by male aging. In fact, naive old males exhibited significantly higher paternity success compared with old males who had previously mated. These results suggest that an interaction between male aging and their mating experience affected their paternity success, but not male aging. Our study has demonstrated that male aging affects their reproductive success in a complex interaction of multiple factors in T. castaneum.
Collapse
Affiliation(s)
- Renya Kawakami
- Graduate School of Agriculture, Kagawa University, Kagawa, Japan
| | - Kentarou Matsumura
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo, Japan
| |
Collapse
|
7
|
Dujon AM, Boddy AM, Hamede R, Ujvari B, Thomas F. Beyond Peto's paradox: expanding the study of cancer resistance across species. Evolution 2024; 79:6-10. [PMID: 39494584 DOI: 10.1093/evolut/qpae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/05/2024]
Abstract
Peto's paradox, which highlights the lower-than-expected cancer rates in larger and/or longer-lived species, is a cornerstone of discussions at the intersection of ecology, evolution, and cancer research. It prompts investigations into how species with traits that theoretically increase cancer risk manage to exhibit cancer resistance, with the ultimate goal of uncovering novel therapies for humans. Building on these foundational insights, we propose expanding the research focus to species that, despite possessing traits beyond size and longevity that theoretically increase their cancer risk, exhibit unexpected cancer resistance. Testing Peto's paradox without interference from transient dynamics also requires considering species that are at an equilibrium between cancer risks and defenses, which is increasingly challenging due to anthropogenic activities. Additionally, we argue that transmissible cancers could significantly help in understanding how the metastatic process might be naturally suppressed. This research perspective is timely and aims to support the continued and in-depth identification of anti-cancer adaptations retained throughout evolution in the animal kingdom.
Collapse
Affiliation(s)
- Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
Pollo P, Lagisz M, Yang Y, Culina A, Nakagawa S. Synthesis of sexual selection: a systematic map of meta-analyses with bibliometric analysis. Biol Rev Camb Philos Soc 2024; 99:2134-2175. [PMID: 38982618 DOI: 10.1111/brv.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.
Collapse
Affiliation(s)
- Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Antica Culina
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, 10000, Croatia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Watts JC, Fitzpatrick CL. The effects of intersexual interactions on survival can drive the evolution of female ornaments in the absence of mate limitation. J Evol Biol 2024; 37:1356-1367. [PMID: 39302174 DOI: 10.1093/jeb/voae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
The evolution of sexual ornaments in animals is typically attributed to reproductive competition. However, sexual ornaments also arise in contexts where the ornamented sex is neither mate nor gamete limited, and explanations for ornamentation in these cases remain incomplete. In many species, particularly those with slow life histories, lifetime reproductive success depends more strongly on adult survival than fecundity, and survival can depend on intersexual interactions. We develop a population genetic model to investigate how the effect of intersexual interactions on survival may contribute to ornament evolution in the absence of competition for mates. Using female ornamentation in polygynous mating systems as a case study, we show that, indeed, ornaments can evolve when the ornament functions to modify interactions with males in ways that enhance a female's own survival. The evolutionary dynamics depend qualitatively on the specific behavioral mechanism by which the ornament modifies social interactions. In all cases, the ornament's long-term persistence is ultimately determined by the coevolution of the male locus that determines how males affect female survival. We outline the scenarios that are most likely to favor the evolution of female ornaments through the effects of intersexual interactions on survival, and we urge empirical researchers to consider the potential for this social selection mechanism to shape traits of interest across taxa.
Collapse
Affiliation(s)
- J Colton Watts
- Department of Biology, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
10
|
Shavrova A, Buzatto B, Kasumovic M. Using Rhodamine to Tag Mites for Studies of Pre- and Post-Copulatory Sexual Selection. Ecol Evol 2024; 14:e70525. [PMID: 39502461 PMCID: PMC11537705 DOI: 10.1002/ece3.70525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Our understanding of sexual selection is advancing with new technologies that tag individuals or their sperm, revealing how females use post-copulatory processes to discriminate between competing mates. Many tagging methods have been devised primarily for model insect organisms like Drosophila or Gryllidae. Developing such novel methods, however, is expensive and requires intensive investment. In this experiment, we trial the use of Rhodamine B (RhB) and Rhodamine 110 (Rh110) in a small arachnid, the bulb mite Rhizoglyphus echinopus, for pre- and post-copulatory observations as it is a relatively inexpensive and simple way to tag individuals and their ejaculate proteins. First, we tested whether RhB and Rh110 applied to food can be used as a tagging method to track and distinguish between individuals. Second, we explored whether Rhodamine applied in this way can be used to track sperm transfer. We found that both tagging probes worked well in tagging individuals and that we were able to distinguish between individuals using both LED and fluorescent microscopy. We also found that Rhodamine degraded rapidly in the animals, likely due to their fast metabolism. Due to the rapid degradation, we observed variable results in the sperm transfer trials. We suggest multiple uses for Rhodamine and highlight other invertebrates where this method may come into use for the study of sexual selection.
Collapse
Affiliation(s)
- Anastasia J. Shavrova
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Bruno A. Buzatto
- College of Science and Engineering, Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Michael M. Kasumovic
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
11
|
Lehtonen J, Parker GA, Whittington CM. The logic of conventional and reversed Bateman gradients. Proc Biol Sci 2024; 291:20242126. [PMID: 39501887 PMCID: PMC11538987 DOI: 10.1098/rspb.2024.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The Bateman gradient is a central concept in sexual selection theory that relates reproductive success to mate number, with important consequences for sex-specific selection. The conventional expectation is that Bateman gradients are steeper in males than females, implying that males benefit more from multiple mating than females do. This claim is supported by much empirical evidence as well as mathematical modelling. However, under some reproductive systems, reversed Bateman gradients are observed, perhaps most notably in syngnathid fishes with male pregnancy. Unlike conventional Bateman gradients, the causal basis of such reversed Bateman gradients has never been modelled mathematically. Here, we present a sex-neutral mathematical model demonstrating how restrictions in capacity for carrying or incubating gametes and embryos (brooding) interact with anisogamy, generating both conventional and reversed Bateman gradients from a single mathematical model. The results clearly demonstrate how anisogamy tends to cause conventional Bateman gradients, but diminishing male brooding capacity under male pregnancy or nesting causes a gradual reversal from conventional to fully 'reversed' Bateman gradients.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyväskylä, Finland
| | - Geoff A. Parker
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Camilla M. Whittington
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales2006, Australia
| |
Collapse
|
12
|
Mc Auley MT. The evolution of ageing: classic theories and emerging ideas. Biogerontology 2024; 26:6. [PMID: 39470884 PMCID: PMC11522123 DOI: 10.1007/s10522-024-10143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Ageing is generally regarded as a non-adaptive by-product of evolution. Based on this premise three classic evolutionary theories of ageing have been proposed. These theories have dominated the literature for several decades. Despite their individual nuances, the common thread which unites them is that they posit that ageing results from a decline in the intensity of natural selection with chronological age. Empirical evidence has been identified which supports each theory. However, a consensus remains to be fully established as to which theory best accounts for the evolution of ageing. A consequence of this uncertainty are counter arguments which advocate for alternative theoretical frameworks, such as those which propose an adaptive origin for ageing, senescence, or death. Given this backdrop, this review has several aims. Firstly, to briefly discuss the classic evolutionary theories. Secondly, to evaluate how evolutionary forces beyond a monotonic decrease in natural selection can affect the evolution of ageing. Thirdly, to examine alternatives to the classic theories. Finally, to introduce a pluralistic interpretation of the evolution of ageing. The basis of this pluralistic theoretical framework is the recognition that certain evolutionary ideas will be more appropriate depending on the organism, its ecological context, and its life history.
Collapse
Affiliation(s)
- Mark T Mc Auley
- School of Science, Engineering and Environment, University of Salford Manchester, Salford, M5 4NT, UK.
| |
Collapse
|
13
|
Balfour V, Armand M, Shuker D. Post-Copulatory Sexual Selection in an Insect With High Levels of Mating Failure. Ecol Evol 2024; 14:e70407. [PMID: 39421326 PMCID: PMC11483530 DOI: 10.1002/ece3.70407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Sexual selection is not a single process. Instead, multiple processes of sexual selection can interact with respect to a given phenotype, in either reinforcing, independent, or conflicting directions. Here we consider how different processes of sexual selection interact in the seed bug Lygaeus simulans. This species is characterised by limited pre-copulatory sexual selection, but the potential for rather strong post-copulatory sexual selection. In particular, mating failure is common in this species, with around 40%-60% of copulations failing to result in the successful transfer of sperm. Mating failure is negatively correlated with female size, with smaller females being less likely to end up inseminated. We have recently argued that this pattern is best explained by cryptic male mate choice for large, more fecund females. Males therefore preferentially inseminate larger females. Here we explore how this potential cryptic male choice interacts with another component of post-copulatory sexual selection: sperm competition. We first manipulated male and female size variation, generating large and small, male and female, size classes. Using a visible mutant marker to assign paternity, we then double-mated females with males, in all combinations of male and female size. Our results showed that sperm competition outcomes were primarily driven by copulation duration, with longer copulations leading to greater paternity share for a male. We also confirmed that larger females are more likely to produce offspring than smaller females, as predicted by cryptic male choice for large females. This effect was again linked to copulation duration, with longer copulations less likely to lead to mating failure. While larger males tended to be more successful in sperm competition, especially if copulating second, female size had little effect on paternity, suggesting that cryptic male choice and sperm competition are acting relatively independently in this species.
Collapse
Affiliation(s)
| | - Mélissa Armand
- School of BiologyUniversity of St AndrewsSt AndrewsUK
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary BiologyUniversity of RegensburgRegensburgGermany
| | | |
Collapse
|
14
|
Carvajal-Rodríguez A. Unifying quantification methods for sexual selection and assortative mating using information theory. Theor Popul Biol 2024; 158:206-215. [PMID: 38917935 DOI: 10.1016/j.tpb.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating. In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established. Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞). It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.
Collapse
Affiliation(s)
- A Carvajal-Rodríguez
- Centro de Investigación Mariña (CIM), Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, Vigo 36310, Spain.
| |
Collapse
|
15
|
Pärssinen V, Simmons LW, Kvarnemo C. Mating competition among females: testing the distinction between natural and sexual selection in an insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240191. [PMID: 38586425 PMCID: PMC10999239 DOI: 10.1098/rsos.240191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 04/09/2024]
Abstract
In species where females compete for mates, the male often provides the female with resources in addition to gametes. A recently suggested definition of sexual selection proposed that if females only benefit from additional resources that come with each mating and not additional gametes, female intrasexual competition for mating opportunities would result in natural selection rather than sexual selection. The nuptial gift-giving bushcricket Kawanaphila nartee has dynamic sex roles and has been a textbook example of sexual selection acting on females via mating competition. We investigated whether females of this species gain fitness benefits from nuptial gifts, additional ejaculates or both by controlling the number of matings and whether the female was allowed to consume the nutritious gift (spermatophylax) at mating. We found that egg production per day of life increased with the number of additional matings, both with and without spermatophylax consumption, but consuming the spermatophylax had an additional positive effect on the number of eggs. These effects were particularly strong in females with shorter lifespans. We discuss how the recently suggested definition of sexual selection applies to nuptial-feeding insects and conclude that both natural and sexual selections influence mating competition in K. nartee females.
Collapse
Affiliation(s)
- Varpu Pärssinen
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg40530, Sweden
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley6009, Australia
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg40530, Sweden
| |
Collapse
|
16
|
Jagiello Z, Dylewski Ł, Szulkin M. The plastic homes of hermit crabs in the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:168959. [PMID: 38185570 DOI: 10.1016/j.scitotenv.2023.168959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Plastic is the most pervasive element of marine waste, with harmful impact on wildlife. By using iEcology (i.e., internet Ecology, use of online data sources as a new tool in ecological research), we report on the emergence of a novel behaviour in hermit crabs related to the use of plastic or other anthropogenic materials as protective shells. We analysed images posted on social media to identify 386 individuals with artificial shells - mainly plastic caps (85 %). We report that 10 of the world's 16 terrestrial hermit crabs use artificial shells, a behaviour observed on all of the Earth's tropical coasts. Four non-exclusive mechanisms may drive individual choice for artificial shells: sexual signaling, lightness of artificial shells, odour cues, and camouflage in a polluted environment. Further research is needed to determine the impact of this behaviour on hermit crab evolutionary trajectories.
Collapse
Affiliation(s)
- Zuzanna Jagiello
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland; Department of Zoology, Poznań University of Life Sciences, Poznań, Poland.
| | - Łukasz Dylewski
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Marta Szulkin
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Jarrett BJM, Miller CW. Host Plant Effects on Sexual Selection Dynamics in Phytophagous Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:41-57. [PMID: 37562047 DOI: 10.1146/annurev-ento-022823-020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Natural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male-male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Natural Sciences, Bangor University, Bangor, United Kingdom;
- Department of Biology, Lund University, Lund, Sweden
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| | - Christine W Miller
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
18
|
Buchinger TJ, Li W. Chemical communication and its role in sexual selection across Animalia. Commun Biol 2023; 6:1178. [PMID: 37985853 PMCID: PMC10662023 DOI: 10.1038/s42003-023-05572-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Sexual selection has been studied as a major evolutionary driver of animal diversity for roughly 50 years. Much evidence indicates that competition for mates favors elaborate signaling traits. However, this evidence comes primarily from a few taxa, leaving sexual selection as a salient evolutionary force across Animalia largely untested. Here, we reviewed the evidence for sexual selection on communication across all animal phyla, classes, and orders with emphasis on chemoreception, the only sense shared across lifeforms. An exhaustive literature review documented evidence for sexual selection on chemosensory traits in 10 of 34 animal phyla and indications of sexual selection on chemosensory traits in an additional 13 phyla. Potential targets of sexual selection include structures and processes involved in production, delivery, and detection of chemical signals. Our review suggests sexual selection plays a widespread role in the evolution of communication and highlights the need for research that better reflects animal diversity.
Collapse
Affiliation(s)
- Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
- Biology Department, Albion College, Albion, MI, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Subramaniam B, Bartlett M. Re-imagining Reproduction: The Queer Possibilities of Plants. Integr Comp Biol 2023; 63:946-959. [PMID: 37024265 PMCID: PMC10563651 DOI: 10.1093/icb/icad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
How did plant sexuality come to so hauntingly resemble human sexual formations? How did plant biology come to theorize plant sexuality with binary formulations of male/female, sex/gender, sperm/egg, active males and passive females-all of which resemble western categories of sex, gender, and sexuality? Tracing the extant language of sex and sexuality in plant reproductive biology, we examine the histories of science to explore how plant reproductive biology emerged historically from formations of colonial racial and sexual politics and how evolutionary biology was premised on the imaginations of racialized heterosexual romance. Drawing on key examples, the paper aims to (un)read plant sexuality and sexual anatomy and bodies to imagine new possibilities for plant sex, sexualities, and their relationalities. In short, plant sex and sexuality are not two different objects of inquiry but are intimately related-it is their inter-relation that is the focus of this essay. One of the key impulses from the humanities that we bring to this essay is a careful consideration of how terms and terminologies are related to each other historically and culturally. In anthropomorphizing plants, if plant sexuality were modeled on human sexual formations, might a re-imagination of plant sexuality open new vistas for the biological sciences? While our definitions of plant sexuality will always be informed by contemporary society and culture, interrogating the histories of our theories and terminologies can help us reimagine a biology that allows for new and more accurate understandings of plants, plant biology, and the evolution of reproduction.
Collapse
Affiliation(s)
- Banu Subramaniam
- Department of Women, Gender, Sexuality Studies, UMass Amherst, 130 Hicks Way, Amherst, MA 01003, USA
| | - Madelaine Bartlett
- Department of Biology, UMass Amherst, 611 N Pleasant St, Amherst, MA 01003, USA
| |
Collapse
|
20
|
DuVal EH, Fitzpatrick CL, Hobson EA, Servedio MR. Inferred Attractiveness: A generalized mechanism for sexual selection that can maintain variation in traits and preferences over time. PLoS Biol 2023; 21:e3002269. [PMID: 37788233 PMCID: PMC10547189 DOI: 10.1371/journal.pbio.3002269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/22/2023] [Indexed: 10/05/2023] Open
Abstract
Sexual selection by mate choice is a powerful force that can lead to evolutionary change, and models of why females choose particular mates are central to understanding its effects. Predominant mate choice theories assume preferences are determined solely by genetic inheritance, an assumption still lacking widespread support. Moreover, preferences often vary among individuals or populations, fail to correspond with conspicuous male traits, or change with context, patterns not predicted by dominant models. Here, we propose a new model that explains this mate choice complexity with one general hypothesized mechanism, "Inferred Attractiveness." In this model, females acquire mating preferences by observing others' choices and use context-dependent information to infer which traits are attractive. They learn to prefer the feature of a chosen male that most distinguishes him from other available males. Over generations, this process produces repeated population-level switches in preference and maintains male trait variation. When viability selection is strong, Inferred Attractiveness produces population-wide adaptive preferences superficially resembling "good genes." However, it results in widespread preference variation or nonadaptive preferences under other predictable circumstances. By casting the female brain as the central selective agent, Inferred Attractiveness captures novel and dynamic aspects of sexual selection and reconciles inconsistencies between mate choice theory and observed behavior.
Collapse
Affiliation(s)
- Emily H. DuVal
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Courtney L. Fitzpatrick
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Maria R. Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
21
|
Kustra MC, Alonzo SH. The coevolutionary dynamics of cryptic female choice. Evol Lett 2023; 7:191-202. [PMID: 37475752 PMCID: PMC10355280 DOI: 10.1093/evlett/qrad025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/22/2023] Open
Abstract
In contrast to sexual selection on traits that affect interactions between the sexes before mating, little theoretical research has focused on the coevolution of postmating traits via cryptic female choice (when females bias fertilization toward specific males). We used simulation models to ask (a) whether and, if so, how nondirectional cryptic female choice (female-by-male interactions in fertilization success) causes deviations from models that focus exclusively on male-mediated postmating processes, and (b) how the risk of sperm competition, the strength of cryptic female choice, and tradeoffs between sperm number and sperm traits interact to influence the coevolutionary dynamics between cryptic female choice and sperm traits. We found that incorporating cryptic female choice can result in males investing much less in their ejaculates than predicted by models with sperm competition only. We also found that cryptic female choice resulted in the evolution of genetic correlations between cryptic female choice and sperm traits, even when the strength of cryptic female choice was weak, and the risk of sperm competition was low. This suggests that cryptic female choice may be important even in systems with low multiple mating. These genetic correlations increased with the risk of sperm competition and as the strength of cryptic female choice increased. When the strength of cryptic female choice and risk of sperm competition was high, extreme codivergence of sperm traits and cryptic female choice preference occurred even when the sperm trait traded off with sperm number. We also found that male traits lagged behind the evolution of female traits; this lag decreased with increasing strength of cryptic female choice and risk of sperm competition. Overall, our results suggest that cryptic female choice deserves more attention theoretically and may be driving trait evolution in ways just beginning to be explored.
Collapse
Affiliation(s)
- Matthew C Kustra
- Corresponding author: Department of Ecology and Evolutionary Biology Coastal Biology Building, 130 McAllister Way, University of California, Santa Cruz, CA 95060, United States.
| | - Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, United States
- Institute of Marine Sciences, University of California, Santa Cruz, California 95060, USA
| |
Collapse
|
22
|
Novaes FC, Natividade JC. The sexual selection of creativity: A nomological approach. Front Psychol 2023; 13:874261. [PMID: 36698589 PMCID: PMC9869285 DOI: 10.3389/fpsyg.2022.874261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/03/2022] [Indexed: 01/11/2023] Open
Abstract
Cultural innovations, such as tools and other technical articles useful for survival, imply that creativity is an outcome of evolution. However, the existence of purely ornamental items obfuscates the functional value of creativity. What is the functional or adaptive value of aesthetic and intellectual ornaments? Recent evidence shows a connection between ornamental creativity, an individual's attractiveness, and their reproductive success. However, this association is not sufficient for establishing that creativity in humans evolved by sexual selection. In this critical review, we synthesize findings from many disciplines about the mechanisms, ontogeny, phylogeny, and the function of creativity in sexual selection. Existing research indicates that creativity has the characteristics expected of a trait evolved by sexual selection: genetic basis, sexual dimorphism, wider variety in males, influence of sex hormones, dysfunctional expressions, an advantage in mating in humans and other animals, and psychological modules adapted to mating contexts. Future studies should investigate mixed findings in the existing literature, such as creativity not being found particularly attractive in a non-WEIRD society. Moreover, we identified remaining knowledge gaps and recommend that further research should be undertaken in the following areas: sexual and reproductive correlates of creativity in non-WEIRD societies, relationship between androgens, development, and creative expression, as well as the impact of ornamental, technical and everyday creativity on attractiveness. Evolutionary research should analyze whether being an evolved signal of genetic quality is the only way in which creativity becomes sexually selected and therefore passed on from generation to generation. This review has gone a long way toward integrating and enhancing our understanding of ornamental creativity as a possible sexual selected psychological trait.
Collapse
Affiliation(s)
- Felipe Carvalho Novaes
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jean Carlos Natividade
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Quero A, Gonzaga MO, Vasconcellos-Neto J, Moura RR. Offspring mortality factors and parental care efficiency of the spider Manogea porracea (Araneidae) in the Brazilian savanna. ETHOL ECOL EVOL 2023. [DOI: 10.1080/03949370.2022.2152197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Adilson Quero
- Pós-graduação em Ecologia, Conservação e Biodiversidade, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marcelo O. Gonzaga
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - João Vasconcellos-Neto
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Rafael R. Moura
- Núcleo de Extensão e Pesquisa em Ecologia e Evolução (NEPEE), Departamento de Ciências Agrárias e Naturais, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| |
Collapse
|
24
|
Matzke M, Rossi A, Tuni C. Pre- and post-copulatory sexual selection increase offspring quality but impose survival costs to female field crickets. J Evol Biol 2023; 36:296-308. [PMID: 36484616 DOI: 10.1111/jeb.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
Whether sexual selection increases or decreases fitness is under ongoing debate. Sexual selection operates before and after mating. Yet, the effects of each episode of selection on individual reproductive success remain largely unexplored. We ask how disentangled pre- and post-copulatory sexual selection contribute to fitness of field crickets Gryllus bimaculatus. Treatments allowed exclusively for (i) pre-copulatory selection, with males fighting and courting one female, and the resulting pair breeding monogamously, (ii) post-copulatory selection, with females mating consecutively to multiple males and (iii) relaxed selection, with enforced pair monogamy. While standardizing the number of matings, we estimated a number of fitness traits across treatments and show that females experiencing sexual selection were more likely to reproduce, their offspring hatched sooner, developed faster and had higher body mass at adulthood, but females suffered survival costs. Interestingly, we found no differences in fitness of females or their offspring from pre- and post-copulatory sexual selection treatments. Our findings highlight the potential for sexual selection in enhancing indirect female fitness while concurrently imposing direct survival costs. By potentially outweighing these costs, increased offspring quality could lead to beneficial population-level consequences of sexual selection.
Collapse
Affiliation(s)
| | - Aurora Rossi
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Cristina Tuni
- Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
25
|
Waffender A, Henshaw JM. Long-term persistence of exaggerated ornaments under Fisherian runaway despite costly mate search. J Evol Biol 2023; 36:45-56. [PMID: 36514848 DOI: 10.1111/jeb.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Exaggerated ornaments often evolve due to the mating preferences of the opposite sex. Genetic correlations between preferences and ornaments can lead both traits to elaborate dramatically in tandem, in a process known as 'Fisherian runaway'. However, in most previous models of Fisherian runaway, elaborate ornaments are not expected to persist when preferences are consistently costly to the choosing sex. In contrast, we show here that exaggerated male ornaments can be maintained long term even when females must pay a cost to choose their mates. Preferences per se are not costly in our model, but females can only act on their preferences by investing resources in mate search. We predict that mate search effort should decrease with the cost of sampling additional mates and increase with the number of possible ornaments that females can choose from. The potential for multiple exaggerated ornaments to coexist depends on subtleties of their cost structure: strict trade-offs (additive costs) favour sequential ornament evolution, whereas looser trade-offs (multiplicative costs) allow for coexistence. Lastly, we show that pleiotropy affecting both ornaments and preferences makes it difficult for Fisherian runaway to initiate, increasing the evolutionary time until ornamentation. Our model highlights the important but neglected role of mate search effort in sexual selection.
Collapse
Affiliation(s)
- Anna Waffender
- Institute of Biology I, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
26
|
Nolazco S, Delhey K, Fan M, Hall ML, Kingma SA, Roast MJ, Teunissen N, Peters A. Which plumage patches provide information about condition and success in a female fairy-wren? Behav Ecol 2022. [DOI: 10.1093/beheco/arac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract
Recent evidence suggests that female ornaments can commonly act as signals. However, how signaling functions might be affected by the tendency for reduced ornament elaboration in relation to males is less well-understood. We address this in mutually ornamented purple-crowned fairy-wrens. We investigated putatively ornamental (tail, ear coverts, crown) and non-ornamental (throat, back) plumage patches in females and compared our findings to previous studies in males. Both sexes have brown backs, buff-white throats, and turquoise-blue tails (bluer in males), while ear coverts are rufous in females and black in males. Both sexes also have a seasonal crown (slate-gray in females, black-and-purple in males). Dominant (breeder) females expressed more complete and grayer (more ornamented) crowns, although variation in coloration should not be discriminable by individuals. Unexpectedly, subordinates showed more colorful (saturated) rufous ear coverts, which should be discriminable. Condition-dependence was only evident for crown completeness (% slate-gray cover). Females with more reddish-brown backs were more reproductively successful. Variation in plumage characteristics did not explain differential allocation by mates or chances of gaining dominance. Our outcomes were not entirely consistent with findings in males. The most notable disparity was for the crown, a signal used in male-male competition that in females seems to be expressed as an incomplete version of the male crown that is not associated with fitness benefits. Our study shows that in a species, multiple traits can vary in their information content and that female ornaments can sometimes be less informative than in males, even those that are produced seasonally.
Collapse
Affiliation(s)
- Sergio Nolazco
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Kaspar Delhey
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
- Max Planck Institute for Ornithology , Seewiesen , Germany
| | - Marie Fan
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Michelle L Hall
- Max Planck Institute for Ornithology , Seewiesen , Germany
- School of Biological Sciences, University of Western Australia , 35 Stirling Highway, Perth, Western Australia 6009 , Australia
| | - Sjouke A Kingma
- Max Planck Institute for Ornithology , Seewiesen , Germany
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research , De Elst 1, 6708 WD Wageningen , The Netherlands
| | - Michael J Roast
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Niki Teunissen
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Anne Peters
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
- Max Planck Institute for Ornithology , Seewiesen , Germany
| |
Collapse
|
27
|
Murray RL, Gwynne DT, Bussière LF. Mating and Sexual Selection in Empidine Dance Flies (Empididae). INSECTS 2022; 13:839. [PMID: 36135540 PMCID: PMC9502509 DOI: 10.3390/insects13090839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Species whose behaviour or morphology diverges from typical patterns can provide unique insights on the evolutionary forces that promote diversity. Darwin recognised that while elaborate sexually selected traits mostly occurred among males, in a few species females possess such traits. Some species from the subfamily Empidinae (Diptera: Empididae) are among the animals that are often invoked to illustrate female ornaments. Empidines include taxa that exhibit varying levels of female ornament expression; some species possess multiple, elaborate female-specific ornaments while others have fewer and more modest adornments, and many species are altogether lacking discernible sexual ornamentation. This continuous variation in display traits in the Empidinae provides unique opportunities to explore the causes and consequences of sexually selected ornament expression. Here, we review the literature on sexual selection and mating systems in these flies and synthesise the evidence for various evolutionary forces that could conceivably create this impressive morphological and behavioural diversity, despite evolutionary constraints on female ornament exaggeration that help to explain its general rarity among animals. We also suggest some aspects of diversity that remain relatively unexplored or poorly understood, and close by offering suggestions for future research progress in the evolutionary ecology of mating behaviour among empidine flies.
Collapse
Affiliation(s)
- Rosalind L. Murray
- Biology Department, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Darryl T. Gwynne
- Biology Department, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Luc F. Bussière
- Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
28
|
Hare RM, Simmons LW. Bateman gradients reflect variation in sexual selection in a species with dynamic sex roles. J Evol Biol 2022; 35:1206-1217. [PMID: 35932479 PMCID: PMC9545144 DOI: 10.1111/jeb.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/09/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Bateman gradients, the slope of the regression of reproductive success on mating success, are among the most commonly reported measures of sexual selection. They are particularly insightful in species with reversed sex roles, where females are expected to be under sexual selection. We measured Bateman gradients in replicate experimental populations of the spermatophore gift-giving bushcricket Kawanaphila nartee (Orthoptera: Tettigoniidae). In this species, the operational sex ratio (OSR) and thus the sex competing for mates varies depending on the availability of pollen food resources: under pollen-limited regimens females are more competitive, whereas under pollen-rich regimens males are more competitive. We maintained populations in enclosures with either limited or supplemented pollen and calculated Bateman gradients for males and females under both conditions. Bateman gradients were significantly positive in males, and the slope was steeper in pollen-supplemented populations where the OSR was more male-biased. Bateman gradients for females were shallow and nonsignificant regardless of pollen availability. Our results show that the strength of sexual selection on males can depend on environmental context. The lack of significant gradients among females may reflect experimental limitations on our ability to estimate Bateman gradients in female K nartee.
Collapse
Affiliation(s)
- Robin M Hare
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Comella I, Tasirin JS, Klinck H, Johnson LM, Clink DJ. Investigating note repertoires and acoustic tradeoffs in the duet contributions of a basal haplorrhine primate. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.910121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acoustic communication serves a crucial role in the social interactions of vocal animals. Duetting—the coordinated singing among pairs of animals—has evolved independently multiple times across diverse taxonomic groups including insects, frogs, birds, and mammals. A crucial first step for understanding how information is encoded and transferred in duets is through quantifying the acoustic repertoire, which can reveal differences and similarities on multiple levels of analysis and provides the groundwork necessary for further studies of the vocal communication patterns of the focal species. Investigating acoustic tradeoffs, such as the tradeoff between the rate of syllable repetition and note bandwidth, can also provide important insights into the evolution of duets, as these tradeoffs may represent the physical and mechanical limits on signal design. In addition, identifying which sex initiates the duet can provide insights into the function of the duets. We have three main goals in the current study: (1) provide a descriptive, fine-scale analysis of Gursky’s spectral tarsier (Tarsius spectrumgurskyae) duets; (2) use unsupervised approaches to investigate sex-specific note repertoires; and (3) test for evidence of acoustic tradeoffs in the rate of note repetition and bandwidth of tarsier duet contributions. We found that both sexes were equally likely to initiate the duets and that pairs differed substantially in the duration of their duets. Our unsupervised clustering analyses indicate that both sexes have highly graded note repertoires. We also found evidence for acoustic tradeoffs in both male and female duet contributions, but the relationship in females was much more pronounced. The prevalence of this tradeoff across diverse taxonomic groups including birds, bats, and primates indicates the constraints that limit the production of rapidly repeating broadband notes may be one of the few ‘universals’ in vocal communication. Future carefully designed playback studies that investigate the behavioral response, and therefore potential information transmitted in duets to conspecifics, will be highly informative.
Collapse
|
30
|
Curren LJ, Sawdy MA, Scribner KT, Lehmann KDS, Holekamp KE. Endurance rivalry among male spotted hyenas: what does it mean to “endure”? Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Parrett JM, Chmielewski S, Aydogdu E, Łukasiewicz A, Rombauts S, Szubert-Kruszyńska A, Babik W, Konczal M, Radwan J. Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nat Ecol Evol 2022; 6:1330-1342. [DOI: 10.1038/s41559-022-01816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
|
32
|
Klug H, Langley C, Reyes E. Resource acquisition and pre-copulatory sexual selection. Ecol Evol 2022; 12:e9137. [PMID: 35898422 PMCID: PMC9309035 DOI: 10.1002/ece3.9137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual selection influences the evolution of phenotypic traits and contributes to patterns of biodiversity. In many animals, mating involves sequential steps. Often, individuals must secure resources that are essential for mating (nests, territories, food), and then after securing a resource, individuals engage in competition for access to limited opposite sex mates and gametes. A large body of empirical research and some verbal models have illustrated that resource acquisition can influence sexual selection. In general, though, we lack a priori predictions of when and how resource acquisition will influence sexual selection. Here, we use a mathematical framework to explore the link between resource acquisition and sexual selection on an advantageous mate-acquisition trait across biologically relevant trade-off scenarios. Our findings provide a set of testable predictions of how resource acquisition can influence sexual selection on mating traits. In general, selection on mate-acquisition traits is expected to be heavily influenced by: (1) the episode of selection considered, and in particular, whether one considers selection associated with the mating pool only or selection associated with both the mating pool and pre-mating pool; (2) whether resource-acquisition and mate-acquisition traits are positively associated or whether they trade off; and (3) the proportion of males with the resource- and mate-acquisition traits.
Collapse
Affiliation(s)
- Hope Klug
- Department of Biology, Geology, and Environmental ScienceUniversity of Tennessee at ChattanoogaChattanoogaTennesseeUSA
- SimCenterUniversity of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - Chelsea Langley
- Department of Biology, Geology, and Environmental ScienceUniversity of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - Elijah Reyes
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| |
Collapse
|
33
|
Abstract
In 1948, Angus Bateman presented experiments and concepts that remain influential and debated in sexual selection. The Bateman gradient relates reproductive success to mate number, and Bateman presented this as the cause of intra-masculine selection. A deeper causal level was subsequently asserted: that the ultimate cause of sex differences in Bateman gradients is the sex difference in gamete numbers, an argument that remains controversial and without mathematical backup. Here I develop models showing how asymmetry in gamete numbers alone can generate steeper Bateman gradients in males. This conclusion remains when the further asymmetry of internal fertilisation is added to the model and fertilisation is efficient. Strong gamete limitation can push Bateman gradients towards equality under external fertilisation and reverse them under internal fertilisation. Thus, this study provides a mathematical formalisation of Bateman’s brief verbal claim, while demonstrating that the link between gamete number and Bateman gradients is not inevitable nor trivial. In 1948, Bateman asserted that sexual selection is driven by the sex difference in gamete numbers. Lehtonen presents mathematical models broadly validating this controversial claim, while pointing out selection can be reversed under some conditions.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
34
|
Moraes YL, Valentova JV, Varella MAC. The Evolution of Playfulness, Play and Play-Like Phenomena in Relation to Sexual Selection. Front Psychol 2022; 13:925842. [PMID: 35756316 PMCID: PMC9226980 DOI: 10.3389/fpsyg.2022.925842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
By conceptualizing Sexual Selection, Darwin showed a way to analyze intra-specific individual differences within an evolutionary perspective. Interestingly, Sexual Selection is often used to investigate the origins of sports, arts, humor, religion and other phenomena that, in several languages, are simply called "play." Despite their manifested differences, these phenomena rely on shared psychological processes, including playfulness. Further, in such behaviors there is usually considerable individual variability, including sex differences, and positive relationship with mating success. However, Sexual Selection is rarely applied in the study of play, with exception to what is concerned as infant training behavior for adult sex roles. We offer an integrated grounding of playful phenomena aligning evolutionary propositions based on sexual selection, which might stimulate further exploration of playfulness within evolutionary perspective.
Collapse
Affiliation(s)
- Yago Luksevicius Moraes
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
35
|
Orr TJ, Lukitsch T, Eiting TP, Brennan PLR. Testing Morphological Relationships Between Female and Male Copulatory Structures in Bats. Integr Comp Biol 2022; 62:icac040. [PMID: 35661885 DOI: 10.1093/icb/icac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lower reproductive tract of female mammals has several competing functions including mating, tract health maintenance, and parturition. Diverse vaginal anatomy suggests interactions between natural and sexual selection, yet despite its importance, female copulatory morphology remains under-studied. We undertook a comparative study across the species-rich mammalian order Chiroptera (bats) with a focus on the suborder Yangochiroptera (Vespertilioniformes) to examine how female vaginal features may have coevolved with male penis morphology to minimize mechanical damage to their tissues during copulation. The penis morphology is diverse, presenting great potential for post-copulatory sexual selection and coevolution with the female morphology, but vaginas have not been carefully examined. Here we test the hypotheses that vaginal thickness and collagen density have coevolved with features of the male penis including the presence of spines and a baculum. We present histological data from females of 24 species from 7 families of bats, and corresponding data on male penis anatomy. We also examine the role of phylogenetic history in the morphological patterns we observe. We found evidence that female vaginal thickness has coevolved with the presence of penile spines, but not with baculum presence or width. Collagen density did not appear to covary with male penile features. Our findings highlight the importance of considering interactions between the sexes in influencing functional reproductive structures and examine how these structures have been under selection in bats.
Collapse
Affiliation(s)
- Teri J Orr
- New Mexico State University, Department of Biology, Las Cruces, NM 88003
| | - Theresa Lukitsch
- New Mexico State University, Department of Biology, Las Cruces, NM 88003
| | - Thomas P Eiting
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112
| | - Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075
| |
Collapse
|
36
|
Lassek WD, Gaulin SJC. Substantial but Misunderstood Human Sexual Dimorphism Results Mainly From Sexual Selection on Males and Natural Selection on Females. Front Psychol 2022; 13:859931. [PMID: 35664212 PMCID: PMC9156798 DOI: 10.3389/fpsyg.2022.859931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 01/05/2023] Open
Abstract
Human sexual dimorphism has been widely misunderstood. A large literature has underestimated the effect of differences in body composition and the role of male contest competition for mates. It is often assumed that sexually dimorphic traits reflect a history of sexual selection, but natural selection frequently builds different phenotypes in males and females. The relatively small sex difference in stature (∼7%) and its decrease during human evolution have been widely presumed to indicate decreased male contest competition for mates. However, females likely increased in stature relative to males in order to successfully deliver large-brained neonates through a bipedally-adapted pelvis. Despite the relatively small differences in stature and body mass (∼16%), there are marked sex differences in body composition. Across multiple samples from groups with different nutrition, males typically have 36% more lean body mass, 65% more muscle mass, and 72% more arm muscle than women, yielding parallel sex differences in strength. These sex differences in muscle and strength are comparable to those seen in primates where sexual selection, arising from aggressive male mating competition, has produced high levels of dimorphism. Body fat percentage shows a reverse pattern, with females having ∼1.6 times more than males and depositing that fat in different body regions than males. We argue that these sex differences in adipose arise mainly from natural selection on women to accumulate neurodevelopmental resources.
Collapse
Affiliation(s)
| | - Steven J. C. Gaulin
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
37
|
Klug H, Langley C, Reyes E. Cascading effects of pre-adult survival on sexual selection. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211973. [PMID: 35425633 PMCID: PMC9006037 DOI: 10.1098/rsos.211973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 05/03/2023]
Abstract
Sexual selection influences broad-scale patterns of biodiversity. While a large body of research has investigated the effect of mate competition on sexual selection, less work has examined how pre-adult life history influences sexual selection. We used a mathematical framework to explore the influence of pre-adult survival on sexual selection. Our model suggests that pre-adult male mortality will affect the strength of sexual selection when a fixed number of adult males have an advantageous mate-acquisition trait. When a fixed number of males have an advantageous mate-acquisition trait, sexual selection is expected to increase when pre-adult mortality is relatively low. By contrast, if a fixed proportion (rather than number) of adult males have a mate-acquisition trait, pre-adult male mortality is not expected to affect the strength of sexual selection. Further, if the advantageous mating trait affects pre-adult survival, natural and sexual selection can interact to influence the overall selection on the mating trait. Given that pre-adult mortality is often shaped by natural selection, our results highlight conditions under which natural selection can have cascading effects on sexual selection.
Collapse
Affiliation(s)
- Hope Klug
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN, USA
- SimCenter, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Chelsea Langley
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Elijah Reyes
- Department of Biological Sciences, Simon Fraser University, Burnaby, CA, USA
| |
Collapse
|
38
|
Dobler R, Charette M, Kaplan K, Turnell BR, Reinhardt K. Divergent natural selection alters male sperm competition success in Drosophila melanogaster. Ecol Evol 2022; 12:e8567. [PMID: 35222953 PMCID: PMC8848461 DOI: 10.1002/ece3.8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Sexually selected traits may also be subject to non-sexual selection. If optimal trait values depend on environmental conditions, then "narrow sense" (i.e., non-sexual) natural selection can lead to local adaptation, with fitness in a certain environment being highest among individuals selected under that environment. Such adaptation can, in turn, drive ecological speciation via sexual selection. To date, most research on the effect of narrow-sense natural selection on sexually selected traits has focused on precopulatory measures like mating success. However, postcopulatory traits, such as sperm function, can also be under non-sexual selection, and have the potential to contribute to population divergence between different environments. Here, we investigate the effects of narrow-sense natural selection on male postcopulatory success in Drosophila melanogaster. We chose two extreme environments, low oxygen (10%, hypoxic) or high CO2 (5%, hypercapnic) to detect small effects. We measured the sperm defensive (P1) and offensive (P2) capabilities of selected and control males in the corresponding selection environment and under control conditions. Overall, selection under hypoxia decreased both P1 and P2, while selection under hypercapnia had no effect. Surprisingly, P1 for both selected and control males was higher under both ambient hypoxia and ambient hypercapnia, compared to control conditions, while P2 was lower under hypoxia. We found limited evidence for local adaptation: the positive environmental effect of hypoxia on P1 was greater in hypoxia-selected males than in controls. We discuss the implications of our findings for the evolution of postcopulatory traits in response to non-sexual and sexual selection.
Collapse
Affiliation(s)
- Ralph Dobler
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| | - Marc Charette
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Katrin Kaplan
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
| | - Biz R. Turnell
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| | - Klaus Reinhardt
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
39
|
Gourevitch EHZ, Shuker DM. Environmental Correlates of Sexual Signaling in the Heteroptera: A Prospective Study. INSECTS 2021; 12:insects12121079. [PMID: 34940167 PMCID: PMC8707444 DOI: 10.3390/insects12121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Sexual selection is a major evolutionary process, shaping organisms in terms of success in competition for access to mates and their gametes. The study of sexual selection has provided rich empirical and theoretical literature addressing the ecological and evolutionary causes and consequences of competition for gametes. However, there remains a bias towards individual, species-specific studies, whilst broader, cross-species comparisons looking for wider-ranging patterns in sexual selection remain uncommon. For instance, we are still some ways from understanding why particular kinds of traits tend to evolve under sexual selection, and under what circumstances. Here we consider sexual selection in the Heteroptera, a sub-order of the Hemiptera, or true bugs. The latter is the largest of the hemimetabolous insect orders, whilst the Heteroptera itself comprises some 40,000-plus described species. We focus on four key sexual signaling modes found in the Heteroptera: chemical signals, acoustic signaling via stridulation, vibrational (substrate) signaling, and finally tactile signaling (antennation). We compare how these modes vary across broad habitat types and provide a review of each type of signal. We ask how we might move towards a more predictive theory of sexual selection, that links mechanisms and targets of sexual selection to various ecologies.
Collapse
|
40
|
Winkler L, Moiron M, Morrow EH, Janicke T. Stronger net selection on males across animals. eLife 2021; 10:e68316. [PMID: 34787569 PMCID: PMC8598160 DOI: 10.7554/elife.68316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022] Open
Abstract
Sexual selection is considered the major driver for the evolution of sex differences. However, the eco-evolutionary dynamics of sexual selection and their role for a population's adaptive potential to respond to environmental change have only recently been explored. Theory predicts that sexual selection promotes adaptation at a low demographic cost only if sexual selection is aligned with natural selection and if net selection is stronger on males compared to females. We used a comparative approach to show that net selection is indeed stronger in males and provide preliminary support that this sex bias is associated with sexual selection. Given that both sexes share the vast majority of their genes, our findings corroborate the notion that the genome is often confronted with a more stressful environment when expressed in males. Collectively, our study supports one of the long-standing key assumptions required for sexual selection to bolster adaptation, and sexual selection may therefore enable some species to track environmental change more efficiently.
Collapse
Affiliation(s)
| | - Maria Moiron
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| | - Edward H Morrow
- Department for Environmental and Life Sciences, Karlstad UniversityKarlstadSweden
| | - Tim Janicke
- Applied Zoology, Technical University DresdenDresdenGermany
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| |
Collapse
|