1
|
Dharmaraaj B, Kunte K. Natural and sexual selection and functional roles influence colouration but not the amount of variation in butterfly wing colour patterns. BMC Ecol Evol 2025; 25:11. [PMID: 39825244 PMCID: PMC11740640 DOI: 10.1186/s12862-024-02346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Trait variation is shaped by functional roles of traits and the strength and direction of selection acting on the traits. We hypothesized that in butterflies, sexually selected colouration is more variable owing to condition-dependent nature and directional selection on sexual ornaments, whereas naturally selected colouration may be less variable because of stabilising selection. We measured reflectance spectra, and extracted colour parameters, to compare the amount of variation in sexually versus naturally selected colour patches across wing surfaces and sexes of 20 butterfly species across 4 families (Nymphalidae, Papilionidae, Pieridae, Lycaenidae). RESULTS We found that: (a) males had more conspicuous, i.e., brighter and more saturated colour patches compared with females (as expected of sexually selected traits but not necessarily of naturally selected traits), and (b) dorsal surfaces in both sexes had more conspicuous sexual ornaments as well as protective (aposematic/mimetic) colour patches on darker wing backgrounds, compared with ventral surfaces. However, colour patches did not differ in the amount of variation either in selection (ecological/sexual functions), sex or wing surface-specific manner. CONCLUSIONS These findings show that functional roles and selection influence colour parameters but not the amount of variation in butterfly wing colour patterns.
Collapse
Affiliation(s)
- Bhavya Dharmaraaj
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560065, India
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560065, India.
| |
Collapse
|
2
|
West SM, Beymer M, Favro C, Kolluru GR. Female preference counteracts negative frequency dependent selection for a stable polymorphism in a livebearing fish. Behav Processes 2024; 222:105096. [PMID: 39278336 DOI: 10.1016/j.beproc.2024.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/28/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
The maintenance of variation within natural populations is key for natural selection to operate. Polymorphism is an intriguing form of variation that involves the persistence of multiple discrete phenotypes called morphs. Polymorphism is often explained by negative frequency dependent selection (NFDS), under which rare morphs have an advantage, such that no one morph takes over. We tested whether mating polymorphism is maintained by NFDS generated by female choice, in the livebearing poeciliid fish, Girardinus metallicus, whose males are either common, plain morphs or rare, black morphs. Females were treated with one morph for several weeks and tested with both, in mate choice and direct competition assays. Contrary to NFDS via female choice, females preferred the morph with which they were treated. This may disrupt the polymorphism given the rarity of black morphs in the wild, unless black morphs have other advantages: we found that black morphs tended to exhibit higher mating activity, and other studies have demonstrated that they are more aggressive. Interestingly, only black morphs display to females prior to copulation; however, there is little evidence for female preference for this morph or the mating display. These results suggest functions for the mating display of black morphs beyond courtship, including aggressive mate guarding, and prompt a discussion of what constitutes courtship behavior.
Collapse
Affiliation(s)
- S M West
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - M Beymer
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - C Favro
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - G R Kolluru
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
3
|
Potter T, Arendt J, Bassar RD, Watson B, Bentzen P, Travis J, Reznick DN. Female preference for rare males is maintained by indirect selection in Trinidadian guppies. Science 2023; 380:309-312. [PMID: 37079663 DOI: 10.1126/science.ade5671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
When females prefer mates with rare phenotypes, sexual selection can maintain rather than deplete genetic variation. However, there is no consensus on why this widespread and frequently observed preference might evolve and persist. We examine the fitness consequences of female preference for rare male color patterns in a natural population of Trinidadian guppies, using a pedigree that spans 10 generations. We demonstrate (i) a rare male reproductive advantage, (ii) that females that mate with rare males gain an indirect fitness advantage through the mating success of their sons, and (iii) the fitness benefit that females accrue through their "sexy sons" evaporates for their grandsons as their phenotype becomes common. Counter to prevailing theory, we show that female preference can be maintained through indirect selection.
Collapse
Affiliation(s)
- Tomos Potter
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Jeff Arendt
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California, USA
| | - Ronald D Bassar
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Beth Watson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - David N Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
4
|
Guerrera AG, Daniel MJ, Hughes KA. Black and orange coloration predict success during male–male competition in the guppy. Behav Ecol 2022. [DOI: 10.1093/beheco/arac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Investigating how intrasexual competition and intersexual mate choice act within a system is crucial to understanding the maintenance and diversity of sexually-dimorphic traits. These two processes can act in concert by selecting for the same trait, or in opposition by selecting for different extremes of the same trait; they can also act on different traits, potentially increasing trait complexity. We asked whether male–male competition and female mate choice act on the same male traits using Trinidadian guppies, which exhibit sexual size dimorphism and male-limited color patterns consisting of different colors arranged along the body and fins. We used behavioral assays to assess the relationship between color and competitive success and then compared our results to the plethora of data on female choice and color in our study population. Males initiated more contests if they were larger than their competitor. Males won contests more often if they had more black coloration than their competitor, and the effect of black was stronger when males had less orange than their competitor. Additionally, males won more often if they had either more structural color (iridescence) and more orange, or less structural color and less orange than their competitor, suggesting multiple combinations of color traits predict success. Females from our study population exhibit a strong preference for more orange coloration. Thus, traits favored in male contests differ from those favored by intersexual selection in this population. These results suggest that inter- and intrasexual selection, when acting concurrently, can promote increased complexity of sexually selected traits.
Collapse
Affiliation(s)
- Alexa G Guerrera
- Department of Biological Science, Florida State University , Tallahassee, FL , USA
| | - M J Daniel
- Department of Biological Science, Florida State University , Tallahassee, FL , USA
- Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON , Canada
| | - K A Hughes
- Department of Biological Science, Florida State University , Tallahassee, FL , USA
| |
Collapse
|
5
|
Valvo JJ, Aponte JD, Daniel MJ, Dwinell K, Rodd H, Houle D, Hughes KA. Using Delaunay triangulation to sample whole-specimen color from digital images. Ecol Evol 2021; 11:12468-12484. [PMID: 34594513 PMCID: PMC8462138 DOI: 10.1002/ece3.7992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
Color variation is one of the most obvious examples of variation in nature, but biologically meaningful quantification and interpretation of variation in color and complex patterns are challenging. Many current methods for assessing variation in color patterns classify color patterns using categorical measures and provide aggregate measures that ignore spatial pattern, or both, losing potentially important aspects of color pattern.Here, we present Colormesh, a novel method for analyzing complex color patterns that offers unique capabilities. Our approach is based on unsupervised color quantification combined with geometric morphometrics to identify regions of putative spatial homology across samples, from histology sections to whole organisms. Colormesh quantifies color at individual sampling points across the whole sample.We demonstrate the utility of Colormesh using digital images of Trinidadian guppies (Poecilia reticulata), for which the evolution of color has been frequently studied. Guppies have repeatedly evolved in response to ecological differences between up- and downstream locations in Trinidadian rivers, resulting in extensive parallel evolution of many phenotypes. Previous studies have, for example, compared the area and quantity of discrete color (e.g., area of orange, number of black spots) between these up- and downstream locations neglecting spatial placement of these areas. Using the Colormesh pipeline, we show that patterns of whole-animal color variation do not match expectations suggested by previous work.Colormesh can be deployed to address a much wider range of questions about color pattern variation than previous approaches. Colormesh is thus especially suited for analyses that seek to identify the biologically important aspects of color pattern when there are multiple competing hypotheses or even no a priori hypotheses at all.
Collapse
Affiliation(s)
- Jennifer J. Valvo
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Jose David Aponte
- Department of Cell Biology and AnatomyUniversity of CalgaryCalgaryABCanada
| | - Mitch J. Daniel
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kenna Dwinell
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Helen Rodd
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - David Houle
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kimberly A. Hughes
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
6
|
Camargo-dos-Santos B, Gonçalves BB, Bellot MS, Guermandi II, Barki A, Giaquinto PC. Water turbidity–induced alterations in coloration and courtship behavior of male guppies (Poecilia reticulata). Acta Ethol 2021. [DOI: 10.1007/s10211-021-00369-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
De Serrano AR, Hughes KA, Rodd FH. Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies. Sci Rep 2021; 11:3985. [PMID: 33597600 PMCID: PMC7889922 DOI: 10.1038/s41598-021-83448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Evidence is emerging that paternal effects, the nongenetic influence of fathers on their offspring, can be transgenerational, spanning several generations. Methylphenidate hydrochloride (MPH; e.g. Ritalin) is a dopaminergic drug that is highly prescribed to adolescent males for the treatment of Attention-deficit/hyperactivity disorder. It has been suggested that MPH could cause transgenerational effects because MPH can affect the male germline in rodents and because paternal effects have been observed in individuals taking similar drugs (e.g. cocaine). Despite these concerns, the transgenerational effects of paternal MPH exposure are unknown. Therefore, we exposed male and female Trinidadian guppies (Poecilia reticulata) to a low, chronic dose of MPH and observed that MPH affected the anxiety/exploratory behaviour of males, but not females. Because of this male-specific effect, we investigated the transgenerational effects of MPH through the paternal line. We observed behavioural effects of paternal MPH exposure on offspring and great-grandoffspring that were not directly administered the drug, making this the first study to demonstrate that paternal MPH exposure can affect descendants. These effects were not due to differential mortality or fecundity between control and MPH lines. These results highlight the transgenerational potential of MPH.
Collapse
Affiliation(s)
- Alex R De Serrano
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada.
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
8
|
Experimentally altered male mating behaviour affects offspring exploratory behaviour via nongenetic paternal effects. Behav Brain Res 2020; 401:113062. [PMID: 33316325 DOI: 10.1016/j.bbr.2020.113062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Evidence is emerging that fathers can have nongenetic effects on the phenotypes of their offspring. Most studies have focused on the role that nongenetic modifications to sperm can have on offspring phenotype; however, fathers can also have nongenetic effects on offspring through their interactions with females, called female-mediated paternal effects. These effects can occur in situations where male phenotype, e.g. behaviour or morphology, affects female stress and/or provisioning of offspring. These effects are potentially widespread, but few studies have explicitly investigated the role of female-mediated paternal effects on offspring phenotype. Here, we asked if male mating interactions can affect offspring via female mediated paternal effects in the Trinidadian guppy, Poecilia reticulata. To do this, we manipulated mating behaviour by: (i) administering a drug known to affect the neurotransmitter dopamine, and (ii) varying the familiarity of potential mates, which affects attractiveness in this species. With these treatments, we successfully manipulated the mating behaviour of male guppies and female preference for those males. Further, we found significant effects of sire mating behaviour, sire drug treatment, and parental familiarity status on behavioural measures of offspring anxiety in response to a novel object. Because Control offspring of 'familiar' and 'unfamiliar' pairs differed in their behaviour, our results cannot be solely attributed to potential nongenetic modifications to sperm caused by the drug. These results emphasize the importance of female-mediated paternal effects, including those caused by altered male mating behaviour, in shaping offspring phenotype.
Collapse
|