1
|
Dehnen T, Nyaguthii B, Cherono W, Boogert NJ, Farine DR. Breeding-Related Changes in Social Interactions Among Female Vulturine Guineafowl. Ecol Evol 2025; 15:e70943. [PMID: 39896772 PMCID: PMC11783233 DOI: 10.1002/ece3.70943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Agonistic and affiliative interactions with group members dictate individual access to resources, and investment in competing for resources is often traded off with other needs. For example, reproductive investment can reduce body condition and, thereby, an individual's ability to win future agonistic interactions. However, group members may also alter their behaviour towards reproductive individuals, such as becoming more or less aggressive. Here, we investigated the social consequences of reproduction in female vulturine guineafowl Acryllium vulturinum, a plural breeder in which females disperse and are subordinate to males. We found opposing patterns for within- and between-sex dominance interactions experienced by females from before to after breeding. Specifically, breeding females became far less likely to win dominance interactions with non-breeding females after breeding than before breeding, but received considerably fewer male aggressions than non-breeding females after breeding. Despite a limited sample size, our study reveals that reproduction can have nuanced trade-offs with dominance and suggests that the study of dominance may benefit from explicitly considering variation in interaction rates as an additional factor affecting individuals.
Collapse
Affiliation(s)
- Tobit Dehnen
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Department of Collective BehaviorMax Planck Institute of Animal BehaviorKonstanzGermany
| | - Brendah Nyaguthii
- Department of OrnithologyNational Museums of KenyaNairobiKenya
- Mpala Research CentreNanyukiKenya
- Department of Wildlife, School of Natural Resource ManagementUniversity of EldoretEldoretKenya
| | | | | | - Damien R. Farine
- Department of Collective BehaviorMax Planck Institute of Animal BehaviorKonstanzGermany
- Department of OrnithologyNational Museums of KenyaNairobiKenya
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
2
|
Yamazaki H, Mori S, Kishida O, Nagano AJ, Kokita T. QTL-Based Evidence of Population Genetic Divergence in Male Territorial Aggressiveness of the Japanese Freshwater Threespine Stickleback. Ecol Evol 2025; 15:e70795. [PMID: 39803187 PMCID: PMC11717901 DOI: 10.1002/ece3.70795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Territorial aggression is widespread across the animal kingdom and is expressed in diverse ecological and social contexts. In addition, there are marked variations in the degree of male reproductive territoriality within and between species. These differences are often attributed to genetic components. However, the evolutionary genetic mechanisms in wild animals are poorly understood. This study explored the genetic basis of divergent male territorial aggressiveness between two Japanese freshwater populations, Gifu (GF) and Tomakomai (TM), in the threespine stickleback, which is a well-known model system for both behavioral ecology and evolutionary genetics. First, our field survey indicated that the distribution of reproductive territories differed greatly across breeding habitats between the focal populations, and the density of reproductive territories was much greater in the GF population. Second, a one-on-one arena aquarium experiment on male-male combat using wild-caught and common-garden-reared males revealed that GF males were genetically more aggressive than TM males. Finally, we performed quantitative trait loci (QTL) analysis using an F2 hybrid cross between the two populations to identify the causal genomic regions contributing to the divergence in male territorial aggressiveness. Our QTL analysis identified a single significant locus in an aggression-related behavioral component, that is, the number of bites of focal F2 males toward a GF stimulus intruder. Two notable behavior-related genes, HTR2A and MAO-A, are found near this locus. These genes have often been suggested to influence of aggressive behavior in animals; therefore, they are regarded as important candidate genes for further functional analyses. Thus, we are the first to provide a QTL-based genetic basis for population divergence in male territorial aggressiveness in the threespine stickleback.
Collapse
Affiliation(s)
| | - Seiichi Mori
- The Institute of Regional DevelopmentGifu Kyoritsu UniversityOgakiJapan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern BiosphereHokkaido UniversityTomakomaiJapan
| | - Atsushi J. Nagano
- Faculty of AgricultureRyukoku UniversityOtsuJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | | |
Collapse
|
3
|
Simpson S, Briffa M. Sea anemones ( Actinia equina) show consistent individual differences in boldness and thoroughness but lack a behavioural syndrome. Proc Biol Sci 2024; 291:20241345. [PMID: 39013424 PMCID: PMC11251758 DOI: 10.1098/rspb.2024.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Behavioural syndromes are suites of behaviours that corelate between-individuals but the same behaviours may also show within-individual correlations owing to state dependency or trade-offs. Therefore, overall phenotypic behavioural correlations must be separated into their between- and within-individual components. We investigate how startle response duration (an index of boldness) and time taken to reject an inert item (an index of investigation thoroughness) covary in beadlet sea anemones, Actinia equina. Anemones took longer to reject a more complex item compared to a simpler one, validating this measure of investigation thoroughness. We then quantified between- and within-individual correlations using a Bayesian analysis and an alternative frequentist analysis, which returned the same results. Startle responses decreased with anemone size while thoroughness decreased across repeated observations, indicative of simple learning. For each behaviour, repeatability was significant but relatively low and there was no behavioural syndrome. Rather, the two behaviours showed a negative within-individual correlation in most individuals. Thus, boldness and thoroughness are unlikely to be under correlative selection, and they may instead be expressed independently, in line with the general pattern that cross-contextual behavioural syndromes are comparatively rare. It now appears that this pattern may extend broadly across animal diversity.
Collapse
Affiliation(s)
- Samantha Simpson
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, PlymouthPL4 8AA, UK
| | - Mark Briffa
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, PlymouthPL4 8AA, UK
| |
Collapse
|
4
|
Tuliozi B, Mantovani R, Schoepf I, Tsuruta S, Mancin E, Sartori C. Genetic correlations of direct and indirect genetic components of social dominance with fitness and morphology traits in cattle. Genet Sel Evol 2023; 55:84. [PMID: 38037008 PMCID: PMC10687847 DOI: 10.1186/s12711-023-00845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Within the same species, individuals show marked variation in their social dominance. Studies on a handful of populations have indicated heritable genetic variation for this trait, which is determined by both the genetic background of the individual (direct genetic effect) and of its opponent (indirect genetic effect). However, the evolutionary consequences of selection for this trait are largely speculative, as it is not a usual target of selection in livestock populations. Moreover, studying social dominance presents the challenge of working with a phenotype with a mean value that cannot change in the population, as for every winner of an agonistic interaction there will necessarily be a loser. Thus, to investigate what could be the evolutionary response to selection for social dominance, it is necessary to focus on traits that might be correlated with it. This study investigated the genetic correlations of social dominance, both direct and indirect, with several morphology and fitness traits. We used a dataset of agonistic contests involving cattle (Bos taurus): during these contests, pairs of cows compete in ritualized interactions to assess social dominance. The outcomes of 37,996 dominance interactions performed by 8789 cows over 20 years were combined with individual data for fertility, mammary health, milk yield and morphology and analysed using bivariate animal models including indirect genetic effects. RESULTS We found that winning agonistic interactions has a positive genetic correlation with more developed frontal muscle mass, lower fertility, and poorer udder health. We also discovered that the trends of changes in the estimated breeding values of social dominance, udder health and more developed muscle mass were consistent with selection for social dominance in the population. CONCLUSIONS We present evidence that social dominance is genetically correlated with fitness traits, as well as empirical evidence of the possible evolutionary trade-offs between these traits. We show that it is feasible to estimate genetic correlations involving dyadic social traits.
Collapse
Affiliation(s)
- Beniamino Tuliozi
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy.
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| | - Ivana Schoepf
- Department of Sciences, Augustana Campus, University of Alberta, 4901 46 Ave, Camrose, AB, T4V 2R3, Canada
| | - Shogo Tsuruta
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| | - Cristina Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
5
|
Wice EW, Saltz JB. Indirect genetic effects for social network structure in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220075. [PMID: 36802774 PMCID: PMC9939268 DOI: 10.1098/rstb.2022.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/16/2022] [Indexed: 02/21/2023] Open
Abstract
The position an individual holds in a social network is dependent on both its direct and indirect social interactions. Because social network position is dependent on the actions and interactions of conspecifics, it is likely that the genotypic composition of individuals within a social group impacts individuals' network positions. However, we know very little about whether social network positions have a genetic basis, and even less about how the genotypic makeup of a social group impacts network positions and structure. With ample evidence indicating that network positions influence various fitness metrics, studying how direct and indirect genetic effects shape network positions is crucial for furthering our understanding of how the social environment can respond to selection and evolve. Using replicate genotypes of Drosophila melanogaster fruit flies, we created social groups that varied in their genotypic makeup. Social groups were videoed, and networks were generated using motion-tracking software. We found that both an individual's own genotype and the genotypes of conspecifics in its social group affect its position within a social network. These findings provide an early example of how indirect genetic effects and social network theory can be linked, and shed new light on how quantitative genetic variation shapes the structure of social groups. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Eric Wesley Wice
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
6
|
Montoya AP, Wendlandt CE, Benedict AB, Roberts M, Piovia-Scott J, Griffitts JS, Porter SS. Hosts winnow symbionts with multiple layers of absolute and conditional discrimination mechanisms. Proc Biol Sci 2023; 290:20222153. [PMID: 36598018 PMCID: PMC9811631 DOI: 10.1098/rspb.2022.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In mutualism, hosts select symbionts via partner choice and preferentially direct more resources to symbionts that provide greater benefits via sanctions. At the initiation of symbiosis, prior to resource exchange, it is not known how the presence of multiple symbiont options (i.e. the symbiont social environment) impacts partner choice outcomes. Furthermore, little research addresses whether hosts primarily discriminate among symbionts via sanctions, partner choice or a combination. We inoculated the legume, Acmispon wrangelianus, with 28 pairs of fluorescently labelled Mesorhizobium strains that vary continuously in quality as nitrogen-fixing symbionts. We find that hosts exert robust partner choice, which enhances their fitness. This partner choice is conditional such that a strain's success in initiating nodules is impacted by other strains in the social environment. This social genetic effect is as important as a strain's own genotype in determining nodulation and has both transitive (consistent) and intransitive (idiosyncratic) effects on the probability that a symbiont will form a nodule. Furthermore, both absolute and conditional partner choice act in concert with sanctions, among and within nodules. Thus, multiple forms of host discrimination act as a series of sieves that optimize host benefits and select for costly symbiont cooperation in mixed symbiont populations.
Collapse
Affiliation(s)
- Angeliqua P. Montoya
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Camille E. Wendlandt
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Alex B. Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Miles Roberts
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
7
|
Fighting force and experience combine to determine contest success in a warlike mammal. Proc Natl Acad Sci U S A 2022; 119:e2119176119. [PMID: 35700363 PMCID: PMC9231503 DOI: 10.1073/pnas.2119176119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intergroup conflict has been proposed as a major influence in social evolution. Understanding how intergroup contests exert selection on group living requires determining what properties of groups and their members drive contest success. We analyzed 19 y of data on intergroup fighting in wild banded mongooses to disentangle the factors that determine victory. Two factors, the number of males in the group and the age of the oldest “senior” male, most strongly influence the probability of victory. Senior males may be a benefit because of their disproportionate fighting experience. As in human societies, strength in numbers and the presence of key individuals are critical for success in violent intergroup contests, perhaps influencing selection on individual life history and social behavior. Conflicts between social groups or “intergroup contests” are proposed to play a major role in the evolution of cooperation and social organization in humans and some nonhuman animal societies. In humans, success in warfare and other collective conflicts depends on both fighting group size and the presence and actions of key individuals, such as leaders or talismanic warriors. Understanding the determinants of intergroup contest success in other warlike animals may help to reveal the role of these contests in social evolution. Using 19 y of data on intergroup encounters in a particularly violent social mammal, the banded mongoose (Mungos mungo), we show that two factors, the number of adult males and the age of the oldest male (the “senior” male), have the strongest impacts on the probability of group victory. The advantage conferred by senior males appears to stem from their fighting experience. However, the galvanizing effect of senior males declines as they grow old until, at very advanced ages, senior males become a liability rather than an asset and can be evicted. As in human conflict, strength in numbers and the experience of key individuals combine to determine intergroup contest success in this animal society. We discuss how selection arising from intergroup contests may explain a suite of features of individual life history and social organization, including male eviction, sex-assortative alloparental care, and adult sex ratio.
Collapse
|
8
|
McGlothlin JW, Akçay E, Brodie ED, Moore AJ, Van Cleve J. A Synthesis of Game Theory and Quantitative Genetic Models of Social Evolution. J Hered 2022; 113:109-119. [PMID: 35174861 DOI: 10.1093/jhered/esab064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022] Open
Abstract
Two popular approaches for modeling social evolution, evolutionary game theory and quantitative genetics, ask complementary questions but are rarely integrated. Game theory focuses on evolutionary outcomes, with models solving for evolutionarily stable equilibria, whereas quantitative genetics provides insight into evolutionary processes, with models predicting short-term responses to selection. Here we draw parallels between evolutionary game theory and interacting phenotypes theory, which is a quantitative genetic framework for understanding social evolution. First, we show how any evolutionary game may be translated into two quantitative genetic selection gradients, nonsocial and social selection, which may be used to predict evolutionary change from a single round of the game. We show that synergistic fitness effects may alter predicted selection gradients, causing changes in magnitude and sign as the population mean evolves. Second, we show how evolutionary games involving plastic behavioral responses to partners can be modeled using indirect genetic effects, which describe how trait expression changes in response to genes in the social environment. We demonstrate that repeated social interactions in models of reciprocity generate indirect effects and conversely, that estimates of parameters from indirect genetic effect models may be used to predict the evolution of reciprocity. We argue that a pluralistic view incorporating both theoretical approaches will benefit empiricists and theorists studying social evolution. We advocate the measurement of social selection and indirect genetic effects in natural populations to test the predictions from game theory and, in turn, the use of game theory models to aid in the interpretation of quantitative genetic estimates.
Collapse
Affiliation(s)
- Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Derring Hall Room 2125, 926 West Campus Drive (MC 0406), Blacksburg, VA 24061, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, 102 Leidy Laboratories, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - Edmund D Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, 485 McCormick Road, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Allen J Moore
- College of Agricultural and Environmental Sciences, University of Georgia, 109 Conner Hall, 147 Cedar Street, Athens, GA 30602, USA
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky, 101 T. H. Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
9
|
Lane SM, Briffa M, Wilson AJ, Truebano M, Foster NL. Evidence of fostering in an internally brooding sea anemone. Ethology 2020. [DOI: 10.1111/eth.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sarah M. Lane
- School of Biological and Marine Sciences Animal Behaviour Research Group University of Plymouth Plymouth UK
| | - Mark Briffa
- School of Biological and Marine Sciences Animal Behaviour Research Group University of Plymouth Plymouth UK
| | - Alastair J. Wilson
- Centre for Ecology and Conservation University of Exeter (Penryn Campus) Cornwall UK
| | - Manuela Truebano
- School of Biological and Marine Sciences Animal Behaviour Research Group University of Plymouth Plymouth UK
| | - Nicola L. Foster
- School of Biological and Marine Sciences Animal Behaviour Research Group University of Plymouth Plymouth UK
| |
Collapse
|
10
|
|