1
|
Moseley-Alldredge M, Sheoran S, Yoo H, O’Keefe C, Richmond JE, Chen L. A role for the Erk MAPK pathway in modulating SAX-7/L1CAM-dependent locomotion in Caenorhabditis elegans. Genetics 2022; 220:iyab215. [PMID: 34849872 PMCID: PMC9097276 DOI: 10.1093/genetics/iyab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
L1CAMs are immunoglobulin cell adhesion molecules that function in nervous system development and function. Besides being associated with autism and schizophrenia spectrum disorders, impaired L1CAM function also underlies the X-linked L1 syndrome, which encompasses a group of neurological conditions, including spastic paraplegia and congenital hydrocephalus. Studies on vertebrate and invertebrate L1CAMs established conserved roles that include axon guidance, dendrite morphogenesis, synapse development, and maintenance of neural architecture. We previously identified a genetic interaction between the Caenorhabditis elegans L1CAM encoded by the sax-7 gene and RAB-3, a GTPase that functions in synaptic neurotransmission; rab-3; sax-7 mutant animals exhibit synthetic locomotion abnormalities and neuronal dysfunction. Here, we show that this synergism also occurs when loss of SAX-7 is combined with mutants of other genes encoding key players of the synaptic vesicle (SV) cycle. In contrast, sax-7 does not interact with genes that function in synaptogenesis. These findings suggest a postdevelopmental role for sax-7 in the regulation of synaptic activity. To assess this possibility, we conducted electrophysiological recordings and ultrastructural analyses at neuromuscular junctions; these analyses did not reveal obvious synaptic abnormalities. Lastly, based on a forward genetic screen for suppressors of the rab-3; sax-7 synthetic phenotypes, we determined that mutants in the ERK Mitogen-activated Protein Kinase (MAPK) pathway can suppress the rab-3; sax-7 locomotion defects. Moreover, we established that Erk signaling acts in a subset of cholinergic neurons in the head to promote coordinated locomotion. In combination, these results suggest a modulatory role for Erk MAPK in L1CAM-dependent locomotion in C. elegans.
Collapse
Affiliation(s)
- Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seema Sheoran
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Hayoung Yoo
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Calvin O’Keefe
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Cohen JD, Cadena del Castillo CE, Serra ND, Kaech A, Spang A, Sundaram MV. The Caenorhabditis elegans Patched domain protein PTR-4 is required for proper organization of the precuticular apical extracellular matrix. Genetics 2021; 219:iyab132. [PMID: 34740248 PMCID: PMC8570789 DOI: 10.1093/genetics/iyab132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
The Patched-related superfamily of transmembrane proteins can transport lipids or other hydrophobic molecules across cell membranes. While the Hedgehog receptor Patched has been intensively studied, much less is known about the biological roles of other Patched-related family members. Caenorhabditis elegans has a large number of Patched-related proteins, despite lacking a canonical Hedgehog pathway. Here, we show that PTR-4 promotes the assembly of the precuticle apical extracellular matrix, a transient and molecularly distinct matrix that precedes and patterns the later collagenous cuticle or exoskeleton. ptr-4 mutants share many phenotypes with precuticle mutants, including defects in eggshell dissolution, tube shaping, alae (cuticle ridge) structure, molting, and cuticle barrier function. PTR-4 localizes to the apical side of a subset of outward-facing epithelia, in a cyclical manner that peaks when precuticle matrix is present. Finally, PTR-4 is required to limit the accumulation of the lipocalin LPR-3 and to properly localize the Zona Pellucida domain protein LET-653 within the precuticle. We propose that PTR-4 transports lipids or other hydrophobic components that help to organize the precuticle and that the cuticle and molting defects seen in ptr-4 mutants result at least in part from earlier disorganization of the precuticle.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | - Nicholas D Serra
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zürich, 8006 Zürich, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, 4001 Basel, Switzerland
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
3
|
Collins JE, White RJ, Staudt N, Sealy IM, Packham I, Wali N, Tudor C, Mazzeo C, Green A, Siragher E, Ryder E, White JK, Papatheodoru I, Tang A, Füllgrabe A, Billis K, Geyer SH, Weninger WJ, Galli A, Hemberger M, Stemple DL, Robertson E, Smith JC, Mohun T, Adams DJ, Busch-Nentwich EM. Common and distinct transcriptional signatures of mammalian embryonic lethality. Nat Commun 2019; 10:2792. [PMID: 31243271 PMCID: PMC6594971 DOI: 10.1038/s41467-019-10642-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.
Collapse
Affiliation(s)
- John E Collins
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Richard J White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicole Staudt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Ian M Sealy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ian Packham
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Cecilia Mazzeo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Angela Green
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Emma Siragher
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Irene Papatheodoru
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Amy Tang
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Anja Füllgrabe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Antonella Galli
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Myriam Hemberger
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Derek L Stemple
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Camena Bioscience, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Elizabeth Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - James C Smith
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Timothy Mohun
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
4
|
Kim Y, Choudhry QN, Chatterjee N, Choi J. Immune and xenobiotic response crosstalk to chemical exposure by PA01 infection in the nematode Caenorhabditis elegans. CHEMOSPHERE 2018; 210:1082-1090. [PMID: 30208533 DOI: 10.1016/j.chemosphere.2018.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Most organisms simultaneously face various chemical and biological stresses in the environment. Herein, we investigated how pathogen infection modifies an organism's response to chemical exposure. To explore this phenomenon, we conducted a toxicity study combined with pathogen infection by using the nematode Caenorhabditis elegans, the pathogen Pseudomonas aeruginosa, and various environmental chemicals. C. elegans preinfected with PA01, when subsequently exposed to chemicals, became sensitized to the toxicity of nonylphenol (NP) and cadmium (Cd), whereas they became tolerant to the toxicity of silver nanoparticles (AgNPs); this led us to conduct a mechanistic study focusing on AgNP exposure. A gene expression profiling study revealed that most of the immune response genes activated by PA01 infection remained activated after subsequent exposure to AgNPs, thereby suggesting that the acquired tolerance of C. elegans to AgNP exposure may be due to boosted immunity resulting from PA01 preinfection. Further, a functional genetic analysis revealed that the immune response pathway (i.e., PMK-1/p38 MAPK) was involved in defense against AgNP exposure in PA01-preinfected C. elegans, thus suggesting immune and stress response crosstalk to xenobiotic exposure. This study will aid in the elucidation of how pathogen infection impacts the way the defense system responds to subsequent xenobiotic exposure.
Collapse
Affiliation(s)
- Youngho Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Qaisra Naheed Choudhry
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
5
|
OrthoList 2: A New Comparative Genomic Analysis of Human and Caenorhabditis elegans Genes. Genetics 2018; 210:445-461. [PMID: 30120140 DOI: 10.1534/genetics.118.301307] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/15/2018] [Indexed: 11/18/2022] Open
Abstract
OrthoList, a compendium of Caenorhabditis elegans genes with human orthologs compiled in 2011 by a meta-analysis of four orthology-prediction methods, has been a popular tool for identifying conserved genes for research into biological and disease mechanisms. However, the efficacy of orthology prediction depends on the accuracy of gene-model predictions, an ongoing process, and orthology-prediction algorithms have also been updated over time. Here we present OrthoList 2 (OL2), a new comparative genomic analysis between C. elegans and humans, and the first assessment of how changes over time affect the landscape of predicted orthologs between two species. Although we find that updates to the orthology-prediction methods significantly changed the landscape of C. elegans-human orthologs predicted by individual programs and-unexpectedly-reduced agreement among them, we also show that our meta-analysis approach "buffered" against changes in gene content. We show that adding results from more programs did not lead to many additions to the list and discuss reasons to avoid assigning "scores" based on support by individual orthology-prediction programs; the treatment of "legacy" genes no longer predicted by these programs; and the practical difficulties of updating due to encountering deprecated, changed, or retired gene identifiers. In addition, we consider what other criteria may support claims of orthology and alternative approaches to find potential orthologs that elude identification by these programs. Finally, we created a new web-based tool that allows for rapid searches of OL2 by gene identifiers, protein domains [InterPro and SMART (Simple Modular Architecture Research Tool], or human disease associations ([OMIM (Online Mendelian Inheritence in Man], and also includes available RNA-interference resources to facilitate potential translational cross-species studies.
Collapse
|
6
|
Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in Caenorhabditis elegans. Genetics 2017; 207:625-642. [PMID: 28842397 DOI: 10.1534/genetics.117.300207] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
A lipid and glycoprotein-rich apical extracellular matrix (aECM) or glycocalyx lines exposed membranes in the body, and is particularly important to protect narrow tube integrity. Lipocalins ("fat cups") are small, secreted, cup-shaped proteins that bind and transport lipophilic cargo and are often found in luminal or aECM compartments such as mammalian plasma, urine, or tear film. Although some lipocalins can bind known aECM lipids and/or matrix metalloproteinases, it is not known if and how lipocalins affect aECM structure due to challenges in visualizing the aECM in most systems. Here we show that two Caenorhabditiselegans lipocalins, LPR-1 and LPR-3, have distinct functions in the precuticular glycocalyx of developing external epithelia. LPR-1 moves freely through luminal compartments, while LPR-3 stably localizes to a central layer of the membrane-anchored glycocalyx, adjacent to the transient zona pellucida domain protein LET-653 Like LET-653 and other C. elegans glycocalyx components, these lipocalins are required to maintain the patency of the narrow excretory duct tube, and also affect multiple aspects of later cuticle organization. lpr-1 mutants cannot maintain a continuous excretory duct apical domain and have misshapen cuticle ridges (alae) and abnormal patterns of cuticular surface lipid staining. lpr-3 mutants cannot maintain a passable excretory duct lumen, properly degrade the eggshell, or shed old cuticle during molting, and they lack cuticle barrier function. Based on these phenotypes, we infer that both LPR-1 and LPR-3 are required to build a properly organized aECM, while LPR-3 additionally is needed for aECM clearance and remodeling. The C. elegans glycocalyx provides a powerful system, amenable to both genetic analysis and live imaging, for investigating how lipocalins and lipids affect aECM structure.
Collapse
|
7
|
ESCRT-Dependent Cell Death in a Caenorhabditis elegans Model of the Lysosomal Storage Disorder Mucolipidosis Type IV. Genetics 2015; 202:619-38. [PMID: 26596346 DOI: 10.1534/genetics.115.182485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023] Open
Abstract
Mutations in MCOLN1, which encodes the cation channel protein TRPML1, result in the neurodegenerative lysosomal storage disorder Mucolipidosis type IV. Mucolipidosis type IV patients show lysosomal dysfunction in many tissues and neuronal cell death. The ortholog of TRPML1 in Caenorhabditis elegans is CUP-5; loss of CUP-5 results in lysosomal dysfunction in many tissues and death of developing intestinal cells that results in embryonic lethality. We previously showed that a null mutation in the ATP-Binding Cassette transporter MRP-4 rescues the lysosomal defect and embryonic lethality of cup-5(null) worms. Here we show that reducing levels of the Endosomal Sorting Complex Required for Transport (ESCRT)-associated proteins DID-2, USP-50, and ALX-1/EGO-2, which mediate the final de-ubiquitination step of integral membrane proteins being sequestered into late endosomes, also almost fully suppresses cup-5(null) mutant lysosomal defects and embryonic lethality. Indeed, we show that MRP-4 protein is hypo-ubiquitinated in the absence of CUP-5 and that reducing levels of ESCRT-associated proteins suppresses this hypo-ubiquitination. Thus, increased ESCRT-associated de-ubiquitinating activity mediates the lysosomal defects and corresponding cell death phenotypes in the absence of CUP-5.
Collapse
|
8
|
Thomas HR, Percival SM, Yoder BK, Parant JM. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One 2014; 9:e114632. [PMID: 25503746 PMCID: PMC4263700 DOI: 10.1371/journal.pone.0114632] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 02/01/2023] Open
Abstract
With the goal to generate and characterize the phenotypes of null alleles in all genes within an organism and the recent advances in custom nucleases, genome editing limitations have moved from mutation generation to mutation detection. We previously demonstrated that High Resolution Melting (HRM) analysis is a rapid and efficient means of genotyping known zebrafish mutants. Here we establish optimized conditions for HRM based detection of novel mutant alleles. Using these conditions, we demonstrate that HRM is highly efficient at mutation detection across multiple genome editing platforms (ZFNs, TALENs, and CRISPRs); we observed nuclease generated HRM positive targeting in 1 of 6 (16%) open pool derived ZFNs, 14 of 23 (60%) TALENs, and 58 of 77 (75%) CRISPR nucleases. Successful targeting, based on HRM of G0 embryos correlates well with successful germline transmission (46 of 47 nucleases); yet, surprisingly mutations in the somatic tail DNA weakly correlate with mutations in the germline F1 progeny DNA. This suggests that analysis of G0 tail DNA is a good indicator of the efficiency of the nuclease, but not necessarily a good indicator of germline alleles that will be present in the F1s. However, we demonstrate that small amplicon HRM curve profiles of F1 progeny DNA can be used to differentiate between specific mutant alleles, facilitating rare allele identification and isolation; and that HRM is a powerful technique for screening possible off-target mutations that may be generated by the nucleases. Our data suggest that micro-homology based alternative NHEJ repair is primarily utilized in the generation of CRISPR mutant alleles and allows us to predict likelihood of generating a null allele. Lastly, we demonstrate that HRM can be used to quickly distinguish genotype-phenotype correlations within F1 embryos derived from G0 intercrosses. Together these data indicate that custom nucleases, in conjunction with the ease and speed of HRM, will facilitate future high-throughput mutation generation and analysis needed to establish mutants in all genes of an organism.
Collapse
Affiliation(s)
- Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stefanie M. Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradley K. Yoder
- Department of Cellular, Developmental, and Integrated Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
9
|
Warnhoff K, Murphy JT, Kumar S, Schneider DL, Peterson M, Hsu S, Guthrie J, Robertson JD, Kornfeld K. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation. PLoS Genet 2014; 10:e1004703. [PMID: 25330323 PMCID: PMC4199503 DOI: 10.1371/journal.pgen.1004703] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 08/26/2014] [Indexed: 12/24/2022] Open
Abstract
The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John T. Murphy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sandeep Kumar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle Peterson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Simon Hsu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James Guthrie
- Research Reactor Center, University of Missouri, Columbia, Missouri, United States of America
| | - J. David Robertson
- Research Reactor Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chu JSC, Chua SY, Wong K, Davison AM, Johnsen R, Baillie DL, Rose AM. High-throughput capturing and characterization of mutations in essential genes of Caenorhabditis elegans. BMC Genomics 2014; 15:361. [PMID: 24884423 PMCID: PMC4039747 DOI: 10.1186/1471-2164-15-361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/06/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Essential genes are critical for the development of all organisms and are associated with many human diseases. These genes have been a difficult category to study prior to the availability of balanced lethal strains. Despite the power of targeted mutagenesis, there are limitations in identifying mutations in essential genes. In this paper, we describe the identification of coding regions for essential genes mutated using forward genetic screens in Caenorhabditis elegans. The lethal mutations described here were isolated and maintained by a wild-type allele on a rescuing duplication. RESULTS We applied whole genome sequencing to identify the causative molecular lesion resulting in lethality in existing C. elegans mutant strains. These strains are balanced and can be easily maintained for subsequent characterization. Our method can be effectively used to analyze mutations in a large number of essential genes. We describe here the identification of 64 essential genes in a region of chromosome I covered by the duplication sDp2. Of these, 42 are nonsense mutations, six are splice signal mutations, one deletion, and 15 are non-synonymous mutations. Many of the essential genes in this region function in cell cycle, transcriptional regulation, and RNA processing. CONCLUSIONS The essential genes identified here are represented by mutant strains, many of which have more than one mutant allele. The genetic resource can be utilized to further our understanding of essential gene function and will be applicable to the study of C. elegans development, conserved cellular function, and ultimately lead to improved human health.
Collapse
Affiliation(s)
| | - Shu-Yi Chua
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Kathy Wong
- />Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Ann Marie Davison
- />Department of Biology, Kwantlen Polytechnic University, Surrey, Canada
| | - Robert Johnsen
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David L Baillie
- />Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Ann M Rose
- />Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Thompson O, Edgley M, Strasbourger P, Flibotte S, Ewing B, Adair R, Au V, Chaudhry I, Fernando L, Hutter H, Kieffer A, Lau J, Lee N, Miller A, Raymant G, Shen B, Shendure J, Taylor J, Turner EH, Hillier LW, Moerman DG, Waterston RH. The million mutation project: a new approach to genetics in Caenorhabditis elegans. Genome Res 2013; 23:1749-62. [PMID: 23800452 PMCID: PMC3787271 DOI: 10.1101/gr.157651.113] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have created a library of 2007 mutagenized Caenorhabditis elegans strains, each sequenced to a target depth of 15-fold coverage, to provide the research community with mutant alleles for each of the worm's more than 20,000 genes. The library contains over 800,000 unique single nucleotide variants (SNVs) with an average of eight nonsynonymous changes per gene and more than 16,000 insertion/deletion (indel) and copy number changes, providing an unprecedented genetic resource for this multicellular organism. To supplement this collection, we also sequenced 40 wild isolates, identifying more than 630,000 unique SNVs and 220,000 indels. Comparison of the two sets demonstrates that the mutant collection has a much richer array of both nonsense and missense mutations than the wild isolate set. We also find a wide range of rDNA and telomere repeat copy number in both sets. Scanning the mutant collection for molecular phenotypes reveals a nonsense suppressor as well as strains with higher levels of indels that harbor mutations in DNA repair genes and strains with abundant males associated with him mutations. All the strains are available through the Caenorhabditis Genetics Center and all the sequence changes have been deposited in WormBase and are available through an interactive website.
Collapse
Affiliation(s)
- Owen Thompson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hanna M, Wang L, Audhya A. Worming our way in and out of the Caenorhabditis elegans germline and developing embryo. Traffic 2013; 14:471-8. [PMID: 23331906 DOI: 10.1111/tra.12044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/18/2022]
Abstract
The germline and embryo of the nematode Caenorhabditis elegans have emerged as powerful model systems to study membrane dynamics in an intact, developing animal. In large part, this is due to the architecture of the reproductive system, which necessitates de novo membrane and organelle biogenesis within the stem cell niche to drive compartmentalization throughout the gonad syncytium. Additionally, membrane reorganization events during oocyte maturation and fertilization have been demonstrated to be highly stereotypic, facilitating the development of quantitative assays to measure the impact of perturbations on protein transport. This review will focus on regulatory mechanisms that govern protein trafficking, which have been elucidated using a combination of C. elegans genetics, biochemistry and high-resolution microscopy. Collectively, studies using the simple worm highlight an important niche that the organism holds to define new pathways that regulate vesicle transport, many of which appear to be absent in unicellular systems but remain highly conserved in mammals.
Collapse
Affiliation(s)
- Michael Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 440 Henry Mall, Madison, WI 53706, USA
| | | | | |
Collapse
|
13
|
De Arras L, Seng A, Lackford B, Keikhaee MR, Bowerman B, Freedman JH, Schwartz DA, Alper S. An evolutionarily conserved innate immunity protein interaction network. J Biol Chem 2012; 288:1967-78. [PMID: 23209288 DOI: 10.1074/jbc.m112.407205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Unsoeld T, Park JO, Hutter H. Discoidin domain receptors guide axons along longitudinal tracts in C. elegans. Dev Biol 2012; 374:142-52. [PMID: 23147028 DOI: 10.1016/j.ydbio.2012.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
Discoidin domain receptors are a family of receptor tyrosine kinases activated by collagens. Here we characterize the role of the two discoidin domain receptors, ddr-1 and ddr-2, of the nematode C. elegans during nervous system development. ddr-2 mutant animals exhibit axon guidance defects in major longitudinal tracts most prominently in the ventral nerve cord. ddr-1 mutants show no significant phenotype on their own but significantly enhance guidance defects of ddr-2 in double mutants. ddr-1 and ddr-2 GFP-reporter constructs are expressed in neurons with axons in all affected nerve tracts. DDR-1 and DDR-2 GFP fusion proteins localize to axons. DDR-2 is required cell-autonomously in the PVPR neuron for the guidance of the PVPR pioneer axon, which establishes the left ventral nerve cord tract and serves as substrate for later outgrowing follower axons. Our results provide the first insight on discoidin domain receptor function in invertebrates and establish a novel role for discoidin domain receptors in axon navigation and axon tract formation.
Collapse
Affiliation(s)
- Thomas Unsoeld
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | |
Collapse
|
15
|
large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (BETHESDA, MD.) 2012; 2:1415-25. [PMID: 23173093 PMCID: PMC3484672 DOI: 10.1534/g3.112.003830] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/11/2012] [Indexed: 11/29/2022]
Abstract
The nematode Caenorhabditis elegans is a powerful model system to study contemporary biological problems. This system would be even more useful if we had mutations in all the genes of this multicellular metazoan. The combined efforts of the C. elegans Deletion Mutant Consortium and individuals within the worm community are moving us ever closer to this goal. At present, of the 20,377 protein-coding genes in this organism, 6764 genes with associated molecular lesions are either deletions or null mutations (WormBase WS220). Our three laboratories have contributed the majority of mutated genes, 6841 mutations in 6013 genes. The principal method we used to detect deletion mutations in the nematode utilizes polymerase chain reaction (PCR). More recently, we have used array comparative genome hybridization (aCGH) to detect deletions across the entire coding part of the genome and massively parallel short-read sequencing to identify nonsense, splicing, and missense defects in open reading frames. As deletion strains can be frozen and then thawed when needed, these strains will be an enduring community resource. Our combined molecular screening strategies have improved the overall throughput of our gene-knockout facilities and have broadened the types of mutations that we and others can identify. These multiple strategies should enable us to eventually identify a mutation in every gene in this multicellular organism. This knowledge will usher in a new age of metazoan genetics in which the contribution to any biological process can be assessed for all genes.
Collapse
Affiliation(s)
- The C. elegans Deletion Mutant Consortium
- Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo 162-8666, Japan
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| |
Collapse
|
16
|
Sharma N, Hollensen AK, Bak RO, Staunstrup NH, Schrøder LD, Mikkelsen JG. The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells. PLoS One 2012; 7:e48421. [PMID: 23110238 PMCID: PMC3482222 DOI: 10.1371/journal.pone.0048421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/25/2012] [Indexed: 12/29/2022] Open
Abstract
DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5'-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells.
Collapse
Affiliation(s)
- Nynne Sharma
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
17
|
SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics 2012; 192:905-28. [PMID: 22887816 PMCID: PMC3522166 DOI: 10.1534/genetics.112.143271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. In Caenorhabditis elegans, major sperm protein triggers meiotic resumption through a mechanism involving somatic Gαs–adenylate cyclase signaling and soma-to-germline gap-junctional communication. Using genetic mosaic analysis, we show that the major effector of Gαs–adenylate cyclase signaling, protein kinase A (PKA), is required in gonadal sheath cells for oocyte meiotic maturation and dispensable in the germ line. This result rules out a model in which cyclic nucleotides must transit through sheath-oocyte gap junctions to activate PKA in the germ line, as proposed in vertebrate systems. We conducted a genetic screen to identify regulators of oocyte meiotic maturation functioning downstream of Gαs–adenylate cyclase–PKA signaling. We molecularly identified 10 regulatory loci, which include essential and nonessential factors. sacy-1, which encodes a highly conserved DEAD-box helicase, is an essential germline factor that negatively regulates meiotic maturation. SACY-1 is a multifunctional protein that establishes a mechanistic link connecting the somatic control of meiotic maturation to germline sex determination and gamete maintenance. Modulatory factors include multiple subunits of a CoREST-like complex and the TWK-1 two-pore potassium channel. These factors are not absolutely required for meiotic maturation or its negative regulation in the absence of sperm, but function cumulatively to enable somatic control of meiotic maturation. This work provides insights into the genetic control of meiotic maturation signaling in C. elegans, and the conserved factors identified here might inform analysis in other systems through either homology or analogy.
Collapse
|
18
|
Suh J, Hutter H. A survey of putative secreted and transmembrane proteins encoded in the C. elegans genome. BMC Genomics 2012; 13:333. [PMID: 22823938 PMCID: PMC3534327 DOI: 10.1186/1471-2164-13-333] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Almost half of the Caenorhabditis elegans genome encodes proteins with either a signal peptide or a transmembrane domain. Therefore a substantial fraction of the proteins are localized to membranes, reside in the secretory pathway or are secreted. While these proteins are of interest to a variety of different researchers ranging from developmental biologists to immunologists, most of secreted proteins have not been functionally characterized so far. RESULTS We grouped proteins containing a signal peptide or a transmembrane domain using various criteria including evolutionary origin, common domain organization and functional categories. We found that putative secreted proteins are enriched for small proteins and nematode-specific proteins. Many secreted proteins are predominantly expressed in specific life stages or in one of the two sexes suggesting stage- or sex-specific functions. More than a third of the putative secreted proteins are upregulated upon exposure to pathogens, indicating that a substantial fraction may have a role in immune response. Slightly more than half of the transmembrane proteins can be grouped into broad functional categories based on sequence similarity to proteins with known function. By far the largest groups are channels and transporters, various classes of enzymes and putative receptors with signaling function. CONCLUSION Our analysis provides an overview of all putative secreted and transmembrane proteins in C. elegans. This can serve as a basis for selecting groups of proteins for large-scale functional analysis using reverse genetic approaches.
Collapse
Affiliation(s)
- Jinkyo Suh
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
19
|
Fernandez AG, Bargmann BOR, Mis EK, Edgley ML, Birnbaum KD, Piano F. High-throughput fluorescence-based isolation of live C. elegans larvae. Nat Protoc 2012; 7:1502-10. [PMID: 22814389 PMCID: PMC5274720 DOI: 10.1038/nprot.2012.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For the nematode Caenorhabditis elegans, automated selection of animals of specific genotypes from a mixed pool has become essential for genetic interaction or chemical screens. To date, such selection has been accomplished using specialized instruments. However, access to such dedicated equipment is not common. Here we describe live animal fluorescence-activated cell sorting (laFACS), a protocol for automatic selection of live first larval stage (L1) animals using a standard FACS system. We show that FACS can be used for the precise identification of GFP-expressing and non-GFP-expressing subpopulations and can accomplish high-speed sorting of live animals. We have routinely collected 100,000 or more homozygotes from a mixed starting population within 2 h, and with greater than 99% purity. The sorted animals continue to develop normally, making this protocol ideally suited for the isolation of terminal mutants for use in genetic interaction or chemical genetic screens.
Collapse
Affiliation(s)
- Anita G Fernandez
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Oligoarray comparative genomic hybridization-mediated mapping of suppressor mutations generated in a deletion-biased mutagenesis screen. G3-GENES GENOMES GENETICS 2012; 2:657-63. [PMID: 22690375 PMCID: PMC3362295 DOI: 10.1534/g3.112.002238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022]
Abstract
Suppressor screens are an invaluable method for identifying novel genetic interactions between genes in the model organism Caenorhabditis elegans. However, traditionally this approach has suffered from the laborious and protracted process of mapping mutations at the molecular level. Using a mutagen known to generate small deletions, coupled with oligoarray comparative genomic hybridization (aCGH), we have identified mutations in two genes that suppress the lethality associated with a mutation of the essential receptor tyrosine kinase rol-3. First, we find that deletion of the Bicaudal-C ortholog, bcc-1, suppresses rol-3-associated lethality. Second, we identify several duplications that also suppress rol-3-associated lethality. We establish that overexpression of srap-1, a single gene present in these duplications, mediates the suppression. This study demonstrates the suitability of deletion-biased mutagenesis screening in combination with aCGH characterization for the rapid identification of novel suppressor mutations. In addition to detecting small deletions, this approach is suitable for identifying copy number suppressor mutations, a class of suppressor not easily characterized using alternative approaches.
Collapse
|
21
|
Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Curr Biol 2012; 22:1057-65. [PMID: 22658602 DOI: 10.1016/j.cub.2012.03.066] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Microtubules (MTs) are formed from the lateral association of 11-16 protofilament chains of tubulin dimers, with most cells containing 13-protofilament (13-p) MTs. How these different MTs are formed is unknown, although the number of protofilaments may depend on the nature of the α- and β-tubulins. RESULTS Here we show that the enzymatic activity of the Caenorhabiditis elegans α-tubulin acetyltransferase (α-TAT) MEC-17 allows the production of 15-p MTs in the touch receptor neurons (TRNs) MTs. Without MEC-17, MTs with between 11 and 15 protofilaments are seen. Loss of this enzymatic activity also changes the number and organization of the TRN MTs and affects TRN axonal morphology. In contrast, enzymatically inactive MEC-17 is sufficient for touch sensitivity and proper process outgrowth without correcting the MT defects. Thus, in addition to demonstrating that MEC-17 is required for MT structure and organization, our results suggest that the large number of 15-p MTs, normally found in the TRNs, is not essential for mechanosensation. CONCLUSION These experiments reveal a specific role for α-TAT in the formation of MTs and in the production of higher order MTs arrays. In addition, our results indicate that the α-TAT protein has functions that require acetyltransferase activity (such as the determination of protofilament number) and others that do not (presence of internal MT structures).
Collapse
|
22
|
Abstract
The sperm/oocyte decision in the hermaphrodite germline of Caenorhabditis elegans provides a powerful model for the characterization of stem cell fate specification and differentiation. The germline sex determination program that governs gamete fate has been well studied, but direct mediators of cell-type-specific transcription are largely unknown. We report the identification of spe-44 as a critical regulator of sperm gene expression. Deletion of spe-44 causes sperm-specific defects in cytokinesis, cell cycle progression, and organelle assembly resulting in sterility. Expression of spe-44 correlates precisely with spermatogenesis and is regulated by the germline sex determination pathway. spe-44 is required for the appropriate expression of several hundred sperm-enriched genes. The SPE-44 protein is restricted to the sperm-producing germline, where it localizes to the autosomes (which contain sperm genes) but is excluded from the transcriptionally silent X chromosome (which does not). The orthologous gene in other Caenorhabditis species is similarly expressed in a sex-biased manner, and the protein likewise exhibits autosome-specific localization in developing sperm, strongly suggestive of an evolutionarily conserved role in sperm gene expression. Our analysis represents the first identification of a transcriptional regulator whose primary function is the control of gamete-type-specific transcription in this system. Stem cells give rise to the variety of specialized cell types within an organism. The decision to adopt a particular cell fate, a process known as specification or determination, requires the coordinated expression of all of the genes needed for that specialized cell to develop and function properly. Understanding the mechanisms that govern these patterns of gene expression is critical to our understanding of stem cell fate specification. We study this process in a nematode species that makes both sperm and eggs from the same stem cell population. We have identified a gene, named spe-44, that is required for the proper expression of sperm genes (but not egg genes). Mutation in spe-44 produces sterile sperm with developmental defects. spe-44 is controlled by factors that govern the sperm/egg decision, and its function in controlling sperm gene expression appears to be conserved in other nematode species.
Collapse
|
23
|
Mancuso VP, Parry JM, Storer L, Poggioli C, Nguyen KCQ, Hall DH, Sundaram MV. Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans. Development 2012; 139:979-90. [PMID: 22278925 PMCID: PMC3274359 DOI: 10.1242/dev.075135] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2011] [Indexed: 12/13/2022]
Abstract
Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations.
Collapse
Affiliation(s)
- Vincent P. Mancuso
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jean M. Parry
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Luke Storer
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Corey Poggioli
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H. Hall
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Baylis HA, Vázquez-Manrique RP. Genetic analysis of IP3 and calcium signalling pathways in C. elegans. Biochim Biophys Acta Gen Subj 2011; 1820:1253-68. [PMID: 22146231 DOI: 10.1016/j.bbagen.2011.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND The nematode, Caenorhabditis elegans is an established model system that is particularly well suited to genetic analysis. C. elegans is easily manipulated and we have an in depth knowledge of many aspects of its biology. Thus, it is an attractive system in which to pursue integrated studies of signalling pathways. C. elegans has a complement of calcium signalling molecules similar to that of other animals. SCOPE OF REVIEW We focus on IP3 signalling. We describe how forward and reverse genetic approaches, including RNAi, have resulted in a tool kit which enables the analysis of IP3/Ca2+ signalling pathways. The importance of cell and tissue specific manipulation of signalling pathways and the use of epistasis analysis are highlighted. We discuss how these tools have increased our understanding of IP3 signalling in specific developmental, physiological and behavioural roles. Approaches to imaging calcium signals in C. elegans are considered. MAJOR CONCLUSIONS A wide selection of tools is available for the analysis of IP3/Ca2+ signalling in C. elegans. This has resulted in detailed descriptions of the function of IP3/Ca2+ signalling in the animal's biology. Nevertheless many questions about how IP3 signalling regulates specific processes remain. GENERAL SIGNIFICANCE Many of the approaches described may be applied to other calcium signalling systems. C. elegans offers the opportunity to dissect pathways, perform integrated studies and to test the importance of the properties of calcium signalling molecules to whole animal function, thus illuminating the function of calcium signalling in animals. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Howard A Baylis
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
25
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
26
|
Cheng C, Yan KK, Hwang W, Qian J, Bhardwaj N, Rozowsky J, Lu ZJ, Niu W, Alves P, Kato M, Snyder M, Gerstein M. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLoS Comput Biol 2011; 7:e1002190. [PMID: 22125477 PMCID: PMC3219617 DOI: 10.1371/journal.pcbi.1002190] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 07/27/2011] [Indexed: 02/07/2023] Open
Abstract
We present a network framework for analyzing multi-level regulation in higher eukaryotes based on systematic integration of various high-throughput datasets. The network, namely the integrated regulatory network, consists of three major types of regulation: TF→gene, TF→miRNA and miRNA→gene. We identified the target genes and target miRNAs for a set of TFs based on the ChIP-Seq binding profiles, the predicted targets of miRNAs using annotated 3′UTR sequences and conservation information. Making use of the system-wide RNA-Seq profiles, we classified transcription factors into positive and negative regulators and assigned a sign for each regulatory interaction. Other types of edges such as protein-protein interactions and potential intra-regulations between miRNAs based on the embedding of miRNAs in their host genes were further incorporated. We examined the topological structures of the network, including its hierarchical organization and motif enrichment. We found that transcription factors downstream of the hierarchy distinguish themselves by expressing more uniformly at various tissues, have more interacting partners, and are more likely to be essential. We found an over-representation of notable network motifs, including a FFL in which a miRNA cost-effectively shuts down a transcription factor and its target. We used data of C. elegans from the modENCODE project as a primary model to illustrate our framework, but further verified the results using other two data sets. As more and more genome-wide ChIP-Seq and RNA-Seq data becomes available in the near future, our methods of data integration have various potential applications. The precise control of gene expression lies at the heart of many biological processes. In eukaryotes, the regulation is performed at multiple levels, mediated by different regulators such as transcription factors and miRNAs, each distinguished by different spatial and temporal characteristics. These regulators are further integrated to form a complex regulatory network responsible for the orchestration. The construction and analysis of such networks is essential for understanding the general design principles. Recent advances in high-throughput techniques like ChIP-Seq and RNA-Seq provide an opportunity by offering a huge amount of binding and expression data. We present a general framework to combine these types of data into an integrated network and perform various topological analyses, including its hierarchical organization and motif enrichment. We find that the integrated network possesses an intrinsic hierarchical organization and is enriched in several network motifs that include both transcription factors and miRNAs. We further demonstrate that the framework can be easily applied to other species like human and mouse. As more and more genome-wide ChIP-Seq and RNA-Seq data are going to be generated in the near future, our methods of data integration have various potential applications.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle. PLoS One 2011; 6:e19937. [PMID: 21611156 PMCID: PMC3096668 DOI: 10.1371/journal.pone.0019937] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/22/2011] [Indexed: 02/06/2023] Open
Abstract
Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive “localizome” for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.
Collapse
|
28
|
Schindelman G, Fernandes JS, Bastiani CA, Yook K, Sternberg PW. Worm Phenotype Ontology: integrating phenotype data within and beyond the C. elegans community. BMC Bioinformatics 2011; 12:32. [PMID: 21261995 PMCID: PMC3039574 DOI: 10.1186/1471-2105-12-32] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/24/2011] [Indexed: 02/02/2023] Open
Abstract
Background Caenorhabditis elegans gene-based phenotype information dates back to the 1970's, beginning with Sydney Brenner and the characterization of behavioral and morphological mutant alleles via classical genetics in order to understand nervous system function. Since then C. elegans has become an important genetic model system for the study of basic biological and biomedical principles, largely through the use of phenotype analysis. Because of the growth of C. elegans as a genetically tractable model organism and the development of large-scale analyses, there has been a significant increase of phenotype data that needs to be managed and made accessible to the research community. To do so, a standardized vocabulary is necessary to integrate phenotype data from diverse sources, permit integration with other data types and render the data in a computable form. Results We describe a hierarchically structured, controlled vocabulary of terms that can be used to standardize phenotype descriptions in C. elegans, namely the Worm Phenotype Ontology (WPO). The WPO is currently comprised of 1,880 phenotype terms, 74% of which have been used in the annotation of phenotypes associated with greater than 18,000 C. elegans genes. The scope of the WPO is not exclusively limited to C. elegans biology, rather it is devised to also incorporate phenotypes observed in related nematode species. We have enriched the value of the WPO by integrating it with other ontologies, thereby increasing the accessibility of worm phenotypes to non-nematode biologists. We are actively developing the WPO to continue to fulfill the evolving needs of the scientific community and hope to engage researchers in this crucial endeavor. Conclusions We provide a phenotype ontology (WPO) that will help to facilitate data retrieval, and cross-species comparisons within the nematode community. In the larger scientific community, the WPO will permit data integration, and interoperability across the different Model Organism Databases (MODs) and other biological databases. This standardized phenotype ontology will therefore allow for more complex data queries and enhance bioinformatic analyses.
Collapse
Affiliation(s)
- Gary Schindelman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
29
|
Handelsman DJ. RFD Award Lecture 2010.Hormonal regulation of spermatogenesis: insights from constructing genetic models. Reprod Fertil Dev 2011; 23:507-19. [DOI: 10.1071/rd10308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/23/2010] [Indexed: 11/23/2022] Open
|
30
|
Jones MR, Lohn Z, Rose AM. Specialized chromosomes and their uses in Caenorhabditis elegans. Methods Cell Biol 2011; 106:23-64. [PMID: 22118273 DOI: 10.1016/b978-0-12-544172-8.00002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on Caenorhabditis elegans involves the use of a wide range of genetic and molecular tools consisting of chromosomal material captured and modified for specific purposes. These "specialized chromosomes" come in many forms ranging from relatively simple gene deletions to complex rearrangements involving endogenous chromosomes as well as transgenic constructs. In this chapter, we describe the specialized chromosomes that are available in C. elegans, their origins, practical considerations, and methods for generation and evaluation. We will summarize their uses for biological studies, and their contribution to our knowledge about chromosome biology.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
31
|
Voell MR, Farris L, Levy E, Marden E. A response to Rome: lessons from pre- and post-publication data-sharing in the C. elegans research community. BMC Genomics 2010; 11:708. [PMID: 21162753 PMCID: PMC3019234 DOI: 10.1186/1471-2164-11-708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background In recent years numerous studies have undertaken to measure the impact of patents, material transfer agreements, data-withholding and commercialization pressures on biomedical researchers. Of particular concern is the theory that such pressures may have negative effects on academic and other upstream researchers. In response to these concerns, commentators in some research communities have called for an increased level of access to, and sharing of, data and research materials. We have been studying how data and materials are shared in the community of researchers who use the nematode Caenorhabditis elegans (C. elegans) as a model organism for biological research. Specifically, we conducted a textual analysis of academic articles referencing C. elegans, reviewed C. elegans repository request lists, scanned patents that reference C. elegans and conducted a broad survey of C. elegans researchers. Of particular importance in our research was the role of the C. elegans Gene Knockout Consortium in the facilitation of sharing in this community. Results Our research suggests that a culture of sharing exists within the C. elegans research community. Furthermore, our research provides insight into how this sharing operates and the role of the culture that underpins it. Conclusions The greater scientific community is likely to benefit from understanding the factors that motivate C. elegans researchers to share. In this sense, our research is a 'response' to calls for a greater amount of sharing in other research communities, such as the mouse community, specifically, the call for increased investment and support of centralized resource sharing infrastructure, grant-based funding of data-sharing, clarity of third party recommendations regarding sharing, third party insistence of post-publication data sharing, a decrease in patenting and restrictive material transfer agreements, and increased attribution and reward.
Collapse
|
32
|
Wu TF, Nera B, Chu DS, Shakes DC. Elucidating gene regulatory mechanisms for sperm function through the integration of classical and systems approaches in C. elegans. Syst Biol Reprod Med 2010; 56:222-35. [PMID: 20536322 DOI: 10.3109/19396361003749986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
From worms to mammals, successful spermatogenesis depends on a gene expression profile that balances activating and repressive mechanisms. Besides developmental control of specific spermatogenic genes, male fertility requires temporal shifts in global gene expression and dramatic changes in chromatin structure and condensation. Recent studies are beginning to elucidate the molecular processes that both drive these temporal changes in gene expression and underlie fertility. In this review, we provide an overview of relevant C. elegans studies that have laid the groundwork for modern approaches. Next, we highlight recent studies that investigate how gene expression in C. elegans is modulated during spermatogenesis. These studies use large-scale genomic profiling in combination with bioinformatics, genetics, biochemistry, and in vitro methods to target specific stages or processes during sperm formation. Such studies are beginning to elucidate the multiple layers of gene regulation required during spermatogenesis, i.e., transcriptional, post-transcriptional, and epigenetic. Moreover, knowledge of how C. elegans coordinately regulates gene expression during spermatogenesis promises to provide key insights into parallel processes in mammals that are vital for fertility.
Collapse
Affiliation(s)
- Tammy F Wu
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | |
Collapse
|
33
|
Gaudet J, McGhee JD. Recent advances in understanding the molecular mechanisms regulating C. elegans transcription. Dev Dyn 2010; 239:1388-404. [PMID: 20175193 DOI: 10.1002/dvdy.22246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We review recent studies that have advanced our understanding of the molecular mechanisms regulating transcription in the nematode C. elegans. Topics covered include: (i) general properties of C. elegans promoters; (ii) transcription factors and transcription factor combinations involved in cell fate specification and cell differentiation; (iii) new roles for general transcription factors; (iv) nucleosome positioning in C. elegans "chromatin"; and (v) some characteristics of histone variants and histone modifications and their possible roles in controlling C. elegans transcription.
Collapse
Affiliation(s)
- Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
34
|
Bessereau JL. Knock it down, switch it on. Nat Methods 2010; 7:439-41. [DOI: 10.1038/nmeth0610-439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 2010; 185:417-30. [PMID: 20439776 DOI: 10.1534/genetics.110.116319] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whole-genome sequencing (WGS) of organisms displaying a specific mutant phenotype is a powerful approach to identify the genetic determinants of a plethora of biological processes. We have previously validated the feasibility of this approach by identifying a point-mutated locus responsible for a specific phenotype, observed in an ethyl methanesulfonate (EMS)-mutagenized Caenorhabditis elegans strain. Here we describe the genome-wide mutational profile of 17 EMS-mutagenized genomes as assessed with a bioinformatic pipeline, called MAQGene. Surprisingly, we find that while outcrossing mutagenized strains does reduce the total number of mutations, a striking mutational load is still observed even in outcrossed strains. Such genetic complexity has to be taken into account when establishing a causative relationship between genotype and phenotype. Even though unintentional, the 17 sequenced strains described here provide a resource of allelic variants in almost 1000 genes, including 62 premature stop codons, which represent candidate knockout alleles that will be of further use for the C. elegans community to study gene function.
Collapse
|
36
|
Frøkjaer-Jensen C, Davis MW, Hollopeter G, Taylor J, Harris TW, Nix P, Lofgren R, Prestgard-Duke M, Bastiani M, Moerman DG, Jorgensen EM. Targeted gene deletions in C. elegans using transposon excision. Nat Methods 2010; 7:451-3. [PMID: 20418868 PMCID: PMC2878396 DOI: 10.1038/nmeth.1454] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/29/2010] [Indexed: 01/25/2023]
Abstract
We have developed a method, MosDel, to generate targeted knock-outs of genes in C. elegans. We make use of the Mos1 transposase to excise a Mos1 transposon adjacent to the region to be deleted. The double-strand break is repaired using injected DNA as a template. Repair can delete up to 25 kb of DNA and simultaneously insert a positive selection marker.
Collapse
Affiliation(s)
- Christian Frøkjaer-Jensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Aravind L, Anantharaman V, Venancio TM. Apprehending multicellularity: regulatory networks, genomics, and evolution. ACTA ACUST UNITED AC 2009; 87:143-64. [PMID: 19530132 DOI: 10.1002/bdrc.20153] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the "network view" of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and nonprotein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch subnetwork, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
38
|
Alberghina L, Höfer T, Vanoni M. Molecular networks and system-level properties. J Biotechnol 2009; 144:224-33. [PMID: 19616593 DOI: 10.1016/j.jbiotec.2009.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/07/2009] [Accepted: 07/10/2009] [Indexed: 11/17/2022]
Abstract
Molecular systems biology aims to describe the functions of complex biological processes through recursive integration of molecular analysis, modeling, simulation and theory. It focuses on networks that originate from interconnection of genes, proteins and metabolites whose dynamic interactions generate, as an emergent property of the system, the corresponding function. Although evolutionary optimized, intracellular biochemical parameters, such as the expression level of gene products or the affinity between two or more proteins, must have a permissible range that gives robustness against perturbations to the system. Using the yeast G(1)-to-S transition network as an example we show that sophisticated relations exist among network structure, emergent property and robustness. Different emergent properties are generated from the same network by changing the strength of its interactions, not only by altering expression level, but also through mono and multi-site phosphorylation/dephosphorylation. Besides, multi-site protein phosphorylation modules, widespread in cell cycle, may ensure robust and coherent timing of cell cycle transitions as it happens for the onset of DNA replication. In conclusion, the modulation of biological function/emergent property by modifying interaction strength provides an efficient, highly tunable device to regulate biological processes. Furthermore, the principles outlined herein may provide new insight to network analysis in drug discovery.
Collapse
Affiliation(s)
- Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy.
| | | | | |
Collapse
|
39
|
Manipulating the Caenorhabditis elegans genome using mariner transposons. Genetica 2009; 138:541-9. [PMID: 19347589 DOI: 10.1007/s10709-009-9362-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/20/2009] [Indexed: 12/16/2022]
Abstract
Tc1, one of the founding members of the Tc1/mariner transposon superfamily, was identified in the nematode Caenorhabditis elegans more than 25 years ago. Over the years, Tc1 and other endogenous mariner transposons became valuable tools for mutagenesis and targeted gene inactivation in C. elegans. However, transposition is naturally repressed in the C. elegans germline by an RNAi-like mechanism, necessitating the use of mutant strains in which transposition was globally derepressed, which causes drawbacks such as uncontrolled proliferation of the transposons in the genome and accumulation of background mutations. The more recent mobilization of the Drosophila mariner transposon Mos1 in the C. elegans germline circumvented the problems inherent to endogenous transposons. Mos1 transposition strictly depends on the expression of the Mos transposase, which can be controlled in the germline using inducible promoters. First, Mos1 can be used for insertional mutagenesis. The mobilization of Mos1 copies present on an extrachromosomal array results in the generation of a small number of Mos1 genomic insertions that can be rapidly cloned by inverse PCR. Second, Mos1 insertions can be used for genome engineering. Triggering the excision of a genomic Mos1 insertion causes a chromosomal break, which can be repaired by transgene-instructed gene conversion. This process is used to introduce specific changes in a given gene, such as point mutations, deletions or insertions of a tag, and to create single-copy transgenes.
Collapse
|
40
|
Gem-1 encodes an SLC16 monocarboxylate transporter-related protein that functions in parallel to the gon-2 TRPM channel during gonad development in Caenorhabditis elegans. Genetics 2008; 181:581-91. [PMID: 19087963 DOI: 10.1534/genetics.108.094870] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The gon-2 gene of Caenorhabditis elegans encodes a TRPM cation channel required for gonadal cell divisions. In this article, we demonstrate that the gonadogenesis defects of gon-2 loss-of-function mutants (including a null allele) can be suppressed by gain-of-function mutations in the gem-1 (gon-2 extragenic modifier) locus. gem-1 encodes a multipass transmembrane protein that is similar to SLC16 family monocarboxylate transporters. Inactivation of gem-1 enhances the gonadogenesis defects of gon-2 hypomorphic mutations, suggesting that these two genes probably act in parallel to promote gonadal cell divisions. GEM-1GFP is expressed within the gonadal precursor cells and localizes to the plasma membrane. Therefore, we propose that GEM-1 acts in parallel to the GON-2 channel to promote cation uptake within the developing gonad.
Collapse
|
41
|
Flibotte S, Moerman DG. Experimental analysis of oligonucleotide microarray design criteria to detect deletions by comparative genomic hybridization. BMC Genomics 2008; 9:497. [PMID: 18940006 PMCID: PMC2577661 DOI: 10.1186/1471-2164-9-497] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/21/2008] [Indexed: 12/31/2022] Open
Abstract
Background Microarray comparative genomic hybridization (CGH) is currently one of the most powerful techniques to measure DNA copy number in large genomes. In humans, microarray CGH is widely used to assess copy number variants in healthy individuals and copy number aberrations associated with various diseases, syndromes and disease susceptibility. In model organisms such as Caenorhabditis elegans (C. elegans) the technique has been applied to detect mutations, primarily deletions, in strains of interest. Although various constraints on oligonucleotide properties have been suggested to minimize non-specific hybridization and improve the data quality, there have been few experimental validations for CGH experiments. For genomic regions where strict design filters would limit the coverage it would also be useful to quantify the expected loss in data quality associated with relaxed design criteria. Results We have quantified the effects of filtering various oligonucleotide properties by measuring the resolving power for detecting deletions in the human and C. elegans genomes using NimbleGen microarrays. Approximately twice as many oligonucleotides are typically required to be affected by a deletion in human DNA samples in order to achieve the same statistical confidence as one would observe for a deletion in C. elegans. Surprisingly, the ability to detect deletions strongly depends on the oligonucleotide 15-mer count, which is defined as the sum of the genomic frequency of all the constituent 15-mers within the oligonucleotide. A similarity level above 80% to non-target sequences over the length of the probe produces significant cross-hybridization. We recommend the use of a fairly large melting temperature window of up to 10°C, the elimination of repeat sequences, the elimination of homopolymers longer than 5 nucleotides, and a threshold of -1 kcal/mol on the oligonucleotide self-folding energy. We observed very little difference in data quality when varying the oligonucleotide length between 50 and 70, and even when using an isothermal design strategy. Conclusion We have determined experimentally the effects of varying several key oligonucleotide microarray design criteria for detection of deletions in C. elegans and humans with NimbleGen's CGH technology. Our oligonucleotide design recommendations should be applicable for CGH analysis in most species.
Collapse
Affiliation(s)
- Stephane Flibotte
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada.
| | | |
Collapse
|