1
|
Ma L, Gao Y, Huo Y, Tian T, Hong G, Li H. Integrated analysis of diverse cancer types reveals a breast cancer-specific serum miRNA biomarker through relative expression orderings analysis. Breast Cancer Res Treat 2024; 204:475-484. [PMID: 38191685 PMCID: PMC10959809 DOI: 10.1007/s10549-023-07208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Serum microRNA (miRNA) holds great potential as a non-invasive biomarker for diagnosing breast cancer (BrC). However, most diagnostic models rely on the absolute expression levels of miRNAs, which are susceptible to batch effects and challenging for clinical transformation. Furthermore, current studies on liquid biopsy diagnostic biomarkers for BrC mainly focus on distinguishing BrC patients from healthy controls, needing more specificity assessment. METHODS We collected a large number of miRNA expression data involving 8465 samples from GEO, including 13 different cancer types and non-cancer controls. Based on the relative expression orderings (REOs) of miRNAs within each sample, we applied the greedy, LASSO multiple linear regression, and random forest algorithms to identify a qualitative biomarker specific to BrC by comparing BrC samples to samples of other cancers as controls. RESULTS We developed a BrC-specific biomarker called 7-miRPairs, consisting of seven miRNA pairs. It demonstrated comparable classification performance in our analyzed machine learning algorithms while requiring fewer miRNA pairs, accurately distinguishing BrC from 12 other cancer types. The diagnostic performance of 7-miRPairs was favorable in the training set (accuracy = 98.47%, specificity = 98.14%, sensitivity = 99.25%), and similar results were obtained in the test set (accuracy = 97.22%, specificity = 96.87%, sensitivity = 98.02%). KEGG pathway enrichment analysis of the 11 miRNAs within the 7-miRPairs revealed significant enrichment of target mRNAs in pathways associated with BrC. CONCLUSION Our study provides evidence that utilizing serum miRNA pairs can offer significant advantages for BrC-specific diagnosis in clinical practice by directly comparing serum samples with BrC to other cancer types.
Collapse
Affiliation(s)
- Liyuan Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yaru Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yue Huo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tian Tian
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Wu R, Ma R, Duan X, Zhang J, Li K, Yu L, Zhang M, Liu P, Wang C. Identification of specific prognostic markers for lung squamous cell carcinoma based on tumor progression, immune infiltration, and stem index. Front Immunol 2023; 14:1236444. [PMID: 37841237 PMCID: PMC10570622 DOI: 10.3389/fimmu.2023.1236444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Lung squamous cell carcinoma (LUSC) is a unique subform of nonsmall cell lung cancer (NSCLC). The lack of specific driver genes as therapeutic targets leads to worse prognoses in patients with LUSC, even with chemotherapy, radiotherapy, or immune checkpoint inhibitors. Furthermore, research on the LUSC-specific prognosis genes is lacking. This study aimed to develop a comprehensive LUSC-specific differentially expressed genes (DEGs) signature for prognosis correlated with tumor progression, immune infiltration,and stem index. Methods RNA sequencing data for LUSC and lung adenocarcinoma (LUAD) were extracted from The Cancer Genome Atlas (TCGA) data portal, and DEGs analyses were conducted in TCGA-LUSC and TCGA-LUAD cohorts to identify specific DEGs associated with LUSC. Functional analysis and protein-protein interaction network were performed to annotate the roles of LUSC-specific DEGs and select the top 100 LUSC-specific DEGs. Univariate Cox regression and least absolute shrinkage and selection operator regression analyses were performed to select prognosis-related DEGs. Results Overall, 1,604 LUSC-specific DEGs were obtained, and a validated seven-gene signature was constructed comprising FGG, C3, FGA, JUN, CST3, CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were correlated with poor LUSC prognosis, whereas CPSF4 and HIST1H2BH were potential positive prognosis markers in patients with LUSC. Receiver operating characteristic analysis further confirmed that the genetic profile could accurately estimate the overall survival of LUSC patients. Analysis of immune infiltration demonstrated that the high risk (HR) LUSC patients exhibited accelerated tumor infiltration, relative to low risk (LR) LUSC patients. Molecular expressions of immune checkpoint genes differed significantly between the HR and LR cohorts. A ceRNA network containing 19 lncRNAs, 50 miRNAs, and 7 prognostic DEGs was constructed to demonstrate the prognostic value of novel biomarkers of LUSC-specific DEGs based on tumor progression, stemindex, and immune infiltration. In vitro experimental models confirmed that LUSC-specific DEG FGG expression was significantly higher in tumor cells and correlated with immune tumor progression, immune infiltration, and stem index. In vitro experimental models confirmed that LUSC-specific DEG FGG expression was significantly higher in tumor cells and correlated with immune tumor progression, immune infiltration, and stem index. Conclusion Our study demonstrated the potential clinical implication of the 7- DEGs signature for prognosis prediction of LUSC patients based on tumor progression, immune infiltration, and stem index. And the FGG could be an independent prognostic biomarker of LUSC promoting cell proliferation, migration, invasion, THP-1 cell infiltration, and stem cell maintenance.
Collapse
Affiliation(s)
- Rihan Wu
- School of Life Science, Inner Mongolia University, Hohhot, China
- The Department of Oncology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ru Ma
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xiaojun Duan
- School of Life Science, Inner Mongolia University, Hohhot, China
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jiandong Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Kexin Li
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yu
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Mingyang Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Pengxia Liu
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Ge X, Xu H, Weng S, Zhang Y, Liu L, Wang L, Xing Z, Ba Y, Liu S, Li L, Wang Y, Han X. Systematic analysis of transcriptome signature for improving outcomes in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:8951-8968. [PMID: 37160628 DOI: 10.1007/s00432-023-04814-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE The updated guidelines highlight gene expression-based multigene panel as a critical tool to assess overall survival (OS) and improve treatment for lung adenocarcinoma (LUAD) patients. Nevertheless, genome-wide expression signatures are still limited in real clinical utility because of insufficient data utilization, a lack of critical validation, and inapposite machine learning algorithms. METHODS 2330 primary LUAD samples were enrolled from 11 independent cohorts. Seventy-six algorithm combinations based on ten machine learning algorithms were applied. A total of 108 published gene expression signatures were collected. Multiple pharmacogenomics databases and resources were utilized to identify precision therapeutic drugs. RESULTS We comprehensively developed a robust machine learning-derived genome-wide expression signature (RGS) according to stably OS-associated RNAs (OSRs). RGS was an independent risk element and remained robust and reproducible power by comparing it with general clinical parameters, molecular characteristics, and 108 published signatures. RGS-based stratification possessed different biological behaviors, molecular mechanisms, and immune microenvironment patterns. Integrating multiple databases and previous studies, we identified that alisertib was sensitive to the high-risk group, and RITA was sensitive to the low-risk group. CONCLUSION Our study offers an appealing platform to screen dismal prognosis LUAD patients to improve clinical outcomes by optimizing precision therapy.
Collapse
Affiliation(s)
- Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lifeng Li
- Medical School, Huanghe Science and Technology University, 666 Zi Jing Shan Road, Zhengzhou, 450000, Henan, China
| | - Yuhui Wang
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Identification of mutational signature for lung adenocarcinoma prognosis and immunotherapy prediction. J Mol Med (Berl) 2022; 100:1755-1769. [PMID: 36367565 DOI: 10.1007/s00109-022-02266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
There is no robust genomic signature to predict the prognosis of patients with early-stage lung adenocarcinoma (LUAD). It was known that clonal heterogeneity was closely associated to tumour progression and prognosis prediction. Herein, using stage I patients from The Cancer Genome Atlas, we identified the clonal/subclonal events of each gene and preselected a set of genes with prognosis-specific mutation patterns based on a robust published transcriptomic prognostic signature. Subsequently, we constructed a mutational prognostic signature (MPS), whose prognostic performance was independently validated in two datasets of stage I samples. The predicted high-risk patients had significantly higher immune cell infiltration, along with higher expression of cytotoxic and immune checkpoint genes, and an integrated dataset with 88 samples confirmed that high-risk patients could benefit from immunotherapy. The developed MPS can identify the high-risk patients with stage I LUAD and improve individualised treatment planning of high-risk patients who might benefit from immunotherapy. KEY MESSAGES: We creatively developed a prognostic signature (57-MPS) based on clonal diversity. The high-risk samples displayed an underlying immunosuppressive mechanism. 57-MPS improved the predictive performance of PD-L1 for immunotherapy.
Collapse
|
5
|
Xu H, Zhao B, Zhong W, Teng P, Qiao H. Identification of miRNA Signature Associated With Erectile Dysfunction in Type 2 Diabetes Mellitus by Support Vector Machine-Recursive Feature Elimination. Front Genet 2021; 12:762136. [PMID: 34707644 PMCID: PMC8542849 DOI: 10.3389/fgene.2021.762136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic mellitus erectile dysfunction (DMED) is one of the most common complications of diabetes mellitus (DM), which seriously affects the self-esteem and quality of life of diabetics. MicroRNAs (miRNAs) are endogenous non-coding RNAs whose expression levels can affect multiple cellular processes. Many pieces of studies have demonstrated that miRNA plays a role in the occurrence and development of DMED. However, the exact mechanism of this process is unclear. Hence, we apply miRNA sequencing from blood samples of 10 DMED patients and 10 DM controls to study the mechanisms of miRNA interactions in DMED patients. Firstly, we found four characteristic miRNAs as signature by the SVM-RFE method (hsa-let-7E-5p, hsa-miR-30 days-5p, hsa-miR-199b-5p, and hsa-miR-342–3p), called DMEDSig-4. Subsequently, we correlated DMEDSig-4 with clinical factors and further verified the ability of these miRNAs to classify samples. Finally, we functionally verified the relationship between DMEDSig-4 and DMED by pathway enrichment analysis of miRNA and its target genes. In brief, our study found four key miRNAs, which may be the key influencing factors of DMED. Meanwhile, the DMEDSig-4 could help in the development of new therapies for DMED.
Collapse
Affiliation(s)
- Haibo Xu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The First Hospital of Qiqihar, Qiqihar, China
| | - Baoyin Zhao
- The First Hospital of Qiqihar, Qiqihar, China
| | - Wei Zhong
- The First Hospital of Qiqihar, Qiqihar, China
| | - Peng Teng
- The First Hospital of Qiqihar, Qiqihar, China
| | - Hong Qiao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Liang X, Wang Z, Dai Z, Zhang H, Cheng Q, Liu Z. Promoting Prognostic Model Application: A Review Based on Gliomas. JOURNAL OF ONCOLOGY 2021; 2021:7840007. [PMID: 34394352 PMCID: PMC8356003 DOI: 10.1155/2021/7840007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Malignant neoplasms are characterized by poor therapeutic efficacy, high recurrence rate, and extensive metastasis, leading to short survival. Previous methods for grouping prognostic risks are based on anatomic, clinical, and pathological features that exhibit lower distinguishing capability compared with genetic signatures. The update of sequencing techniques and machine learning promotes the genetic panels-based prognostic model development, especially the RNA-panel models. Gliomas harbor the most malignant features and the poorest survival among all tumors. Currently, numerous glioma prognostic models have been reported. We systematically reviewed all 138 machine-learning-based genetic models and proposed novel criteria in assessing their quality. Besides, the biological and clinical significance of some highly overlapped glioma markers in these models were discussed. This study screened out markers with strong prognostic potential and 27 models presenting high quality. Conclusively, we comprehensively reviewed 138 prognostic models combined with glioma genetic panels and presented novel criteria for the development and assessment of clinically important prognostic models. This will guide the genetic models in cancers from laboratory-based research studies to clinical applications and improve glioma patient prognostic management.
Collapse
Affiliation(s)
- Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Abstract
Malignant neoplasms are characterized by poor therapeutic efficacy, high recurrence rate, and extensive metastasis, leading to short survival. Previous methods for grouping prognostic risks are based on anatomic, clinical, and pathological features that exhibit lower distinguishing capability compared with genetic signatures. The update of sequencing techniques and machine learning promotes the genetic panels-based prognostic model development, especially the RNA-panel models. Gliomas harbor the most malignant features and the poorest survival among all tumors. Currently, numerous glioma prognostic models have been reported. We systematically reviewed all 138 machine-learning-based genetic models and proposed novel criteria in assessing their quality. Besides, the biological and clinical significance of some highly overlapped glioma markers in these models were discussed. This study screened out markers with strong prognostic potential and 27 models presenting high quality. Conclusively, we comprehensively reviewed 138 prognostic models combined with glioma genetic panels and presented novel criteria for the development and assessment of clinically important prognostic models. This will guide the genetic models in cancers from laboratory-based research studies to clinical applications and improve glioma patient prognostic management.
Collapse
|