1
|
Chigozie VU, Saki M, Esimone CO. Molecular structural arrangement in quorum sensing and bacterial metabolic production. World J Microbiol Biotechnol 2025; 41:71. [PMID: 39939401 DOI: 10.1007/s11274-025-04280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Quorum sensing (QS) regulates bacterial behaviors such as biofilm formation, virulence, and metabolite production through signaling molecules like acyl-homoserine lactones (AHLs), peptides, and AI-2. These signals are pivotal in bacterial communication, influencing pathogenicity and industrial applications. This review explores the molecular architecture of QS signals and their role in metabolite production, emphasizing structural modifications that disrupt bacterial communication to control virulence and enhance industrial processes. Key findings highlight the development of synthetic QS analogs, engineered inhibitors, and microbial consortia as innovative tools in biotechnology and medicine. The review underscores the potential of molecular engineering in managing microbial behaviors and optimizing applications like biofuel production, bioplastics, and anti-virulence therapies. Additionally, cross-species signaling mechanisms, particularly involving AI-2, reveal new opportunities for regulating interspecies cooperation and competition. This synthesis aims to bridge molecular insights with practical applications, showcasing how QS-based technologies can drive advancements in microbial biotechnology and therapeutic strategies.
Collapse
Affiliation(s)
- Victor U Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Ebonyi State, Nigeria.
- International Institute for Pharmaceutical Research (IIPR), Ohaozara, Ebonyi State, Nigeria.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
2
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
3
|
Wu S, Yang S, Wang M, Song N, Feng J, Wu H, Yang A, Liu C, Li Y, Guo F, Qiao J. Quorum sensing-based interactions among drugs, microbes, and diseases. SCIENCE CHINA. LIFE SCIENCES 2023; 66:137-151. [PMID: 35933489 DOI: 10.1007/s11427-021-2121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
Many diseases and health conditions are closely related to various microbes, which participate in complex interactions with diverse drugs; nonetheless, the detailed targets of such drugs remain to be elucidated. Many existing studies have reported causal associations among drugs, gut microbes, or diseases, calling for a workflow to reveal their intricate interactions. In this study, we developed a systematic workflow comprising three modules to construct a Quorum Sensing-based Drug-Microbe-Disease (QS-DMD) database ( http://www.qsdmd.lbci.net/ ), which includes diverse interactions for more than 8,000 drugs, 163 microbes, and 42 common diseases. Potential interactions between microbes and more than 8,000 drugs have been systematically studied by targeting microbial QS receptors combined with a docking-based virtual screening technique and in vitro experimental validations. Furthermore, we have constructed a QS-based drug-receptor interaction network, proposed a systematic framework including various drug-receptor-microbe-disease connections, and mapped a paradigmatic circular interaction network based on the QS-DMD, which can provide the underlying QS-based mechanisms for the reported causal associations. The QS-DMD will promote an understanding of personalized medicine and the development of potential therapies for diverse diseases. This work contributes to a paradigm for the construction of a molecule-receptor-microbe-disease interaction network for human health that may form one of the key knowledge maps of precision medicine in the future.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shujuan Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Manman Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Jie Feng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- Institute of Shaoxing, Tianjin University, Shaoxing, 312300, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China. .,Institute of Shaoxing, Tianjin University, Shaoxing, 312300, China.
| |
Collapse
|
4
|
Wu L, An J, Jing X, Chen CC, Dai L, Xu Y, Liu W, Guo RT, Nie Y. Molecular Insights into the Regioselectivity of the Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Catalyzed C–H Hydroxylation of Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianhong An
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang 325000, China
| | - Xiaoran Jing
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, Jiangsu 223814, China
| |
Collapse
|
5
|
Wu S, Feng J, Liu C, Wu H, Qiu Z, Ge J, Sun S, Hong X, Li Y, Wang X, Yang A, Guo F, Qiao J. Machine learning aided construction of the quorum sensing communication network for human gut microbiota. Nat Commun 2022; 13:3079. [PMID: 35654892 PMCID: PMC9163137 DOI: 10.1038/s41467-022-30741-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/17/2022] [Indexed: 01/02/2023] Open
Abstract
Quorum sensing (QS) is a cell-cell communication mechanism that connects members in various microbial systems. Conventionally, a small number of QS entries are collected for specific microbes, which is far from being able to fully depict communication-based complex microbial interactions in human gut microbiota. In this study, we propose a systematic workflow including three modules and the use of machine learning-based classifiers to collect, expand, and mine the QS-related entries. Furthermore, we develop the Quorum Sensing of Human Gut Microbes (QSHGM) database ( http://www.qshgm.lbci.net/ ) including 28,567 redundancy removal entries, to bridge the gap between QS repositories and human gut microbiota. With the help of QSHGM, various communication-based microbial interactions can be searched and a QS communication network (QSCN) is further constructed and analysed for 818 human gut microbes. This work contributes to the establishment of the QSCN which may form one of the key knowledge maps of the human gut microbiota, supporting future applications such as new manipulations to synthetic microbiota and potential therapies to gut diseases.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Feng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Hao Wu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Zekai Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianjun Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuyang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xia Hong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yukun Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaona Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
6
|
Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022; 10:microorganisms10020303. [PMID: 35208758 PMCID: PMC8879831 DOI: 10.3390/microorganisms10020303] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure–activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Mumbai 400056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: or (S.G.P.); (A.O.)
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: or (S.G.P.); (A.O.)
| |
Collapse
|