1
|
Chen C, Zhang Z, Liu Y, Hong W, Karahan H, Wang J, Li W, Diao L, Yu M, Saykin AJ, Nho K, Kim J, Han L. Comprehensive characterization of the transcriptional landscape in Alzheimer's disease (AD) brains. SCIENCE ADVANCES 2025; 11:eadn1927. [PMID: 39752483 PMCID: PMC11698078 DOI: 10.1126/sciadv.adn1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events. We additionally identified 25,351 aberrantly expressed ncRNAs and altered PTM events associated with AD traits and further identified the corresponding protein-coding genes to construct regulatory networks. Furthermore, we developed a user-friendly data portal, ADatlas, facilitating users in exploring our results. Our study aims to establish a comprehensive data platform for ncRNAs and PTMs in AD to advance related research.
Collapse
Affiliation(s)
- Chengxuan Chen
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yuan Liu
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Wei Hong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meichen Yu
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Andrew J. Saykin
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leng Han
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Roučová K, Vopálenský V, Mašek T, Del Llano E, Provazník J, Landry JJM, Azevedo N, Ehler E, Beneš V, Pospíšek M. Loss of ADAR1 protein induces changes in small RNA landscape in hepatocytes. RNA (NEW YORK, N.Y.) 2024; 30:1164-1183. [PMID: 38844344 PMCID: PMC11331409 DOI: 10.1261/rna.080097.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 08/18/2024]
Abstract
In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.
Collapse
Affiliation(s)
- Kristina Roučová
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Václav Vopálenský
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Tomáš Mašek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Edgar Del Llano
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | | | | | | | - Edvard Ehler
- Department of Biology and Environmental Studies, Faculty of Education, Charles University, 116 39 Prague, Czech Republic
| | | | - Martin Pospíšek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
3
|
Kobayashi A, Kitagawa Y, Nasser A, Wakimoto H, Yamada K, Tanaka S. Emerging Roles and Mechanisms of RNA Modifications in Neurodegenerative Diseases and Glioma. Cells 2024; 13:457. [PMID: 38474421 PMCID: PMC10931090 DOI: 10.3390/cells13050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Despite a long history of research, neurodegenerative diseases and malignant brain tumor gliomas are both considered incurable, facing challenges in the development of treatments. Recent evidence suggests that RNA modifications, previously considered as static components of intracellular RNAs, are in fact dynamically regulated across various RNA species in cells and play a critical role in major biological processes in the nervous system. Innovations in next-generation sequencing have enabled the accurate detection of modifications on bases and sugars within various RNA molecules. These RNA modifications influence the stability and transportation of RNA, and crucially affect its translation. This review delves into existing knowledge on RNA modifications to offer a comprehensive inventory of these modifications across different RNA species. The detailed regulatory functions and roles of RNA modifications within the nervous system are discussed with a focus on neurodegenerative diseases and gliomas. This article presents a comprehensive overview of the fundamental mechanisms and emerging roles of RNA modifications in these diseases, which can facilitate the creation of innovative diagnostics and therapeutics for these conditions.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.); (A.N.); (H.W.)
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ali Nasser
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.); (A.N.); (H.W.)
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.); (A.N.); (H.W.)
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keisuke Yamada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0075, Japan; (K.Y.); (S.T.)
| | - Shota Tanaka
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0075, Japan; (K.Y.); (S.T.)
- Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Umerenkov D, Herbert A, Konovalov D, Danilova A, Beknazarov N, Kokh V, Fedorov A, Poptsova M. Z-flipon variants reveal the many roles of Z-DNA and Z-RNA in health and disease. Life Sci Alliance 2023; 6:e202301962. [PMID: 37164635 PMCID: PMC10172764 DOI: 10.26508/lsa.202301962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
Identifying roles for Z-DNA remains challenging given their dynamic nature. Here, we perform genome-wide interrogation with the DNABERT transformer algorithm trained on experimentally identified Z-DNA forming sequences (Z-flipons). The algorithm yields large performance enhancements (F1 = 0.83) over existing approaches and implements computational mutagenesis to assess the effects of base substitution on Z-DNA formation. We show Z-flipons are enriched in promoters and telomeres, overlapping quantitative trait loci for RNA expression, RNA editing, splicing, and disease-associated variants. We cross-validate across a number of orthogonal databases and define BZ junction motifs. Surprisingly, many effects we delineate are likely mediated through Z-RNA formation. A shared Z-RNA motif is identified in SCARF2, SMAD1, and CACNA1 transcripts, whereas other motifs are present in noncoding RNAs. We provide evidence for a Z-RNA fold that promotes adaptive immunity through alternative splicing of KRAB domain zinc finger proteins. An analysis of OMIM and presumptive gnomAD loss-of-function datasets reveals an overlap of Z-flipons with disease-causing variants in 8.6% and 2.9% of Mendelian disease genes, respectively, greatly extending the range of phenotypes mapped to Z-flipons.
Collapse
Affiliation(s)
| | - Alan Herbert
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
- InsideOutBio, Charlestown, MA, USA
| | - Dmitrii Konovalov
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| | - Anna Danilova
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| | - Nazar Beknazarov
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| | | | - Aleksandr Fedorov
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| |
Collapse
|
5
|
Wu S, Fan Z, Kim P, Huang L, Zhou X. The Integrative Studies on the Functional A-to-I RNA Editing Events in Human Cancers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:619-631. [PMID: 36708807 PMCID: PMC10787018 DOI: 10.1016/j.gpb.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, constituting nearly 90% of all RNA editing events in humans, has been reported to contribute to the tumorigenesis in diverse cancers. However, the comprehensive map for functional A-to-I RNA editing events in cancers is still insufficient. To fill this gap, we systematically and intensively analyzed multiple tumorigenic mechanisms of A-to-I RNA editing events in samples across 33 cancer types from The Cancer Genome Atlas. For individual candidate among ∼ 1,500,000 quantified RNA editing events, we performed diverse types of downstream functional annotations. Finally, we identified 24,236 potentially functional A-to-I RNA editing events, including the cases in APOL1, IGFBP3, GRIA2, BLCAP, and miR-589-3p. These events might play crucial roles in the scenarios of tumorigenesis, due to their tumor-related editing frequencies or probable effects on altered expression profiles, protein functions, splicing patterns, and microRNA regulations of tumor genes. Our functional A-to-I RNA editing events (https://ccsm.uth.edu/CAeditome/) will help better understand the cancer pathology from the A-to-I RNA editing aspect.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Zhiwei Fan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610040, China; Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an 710071, China.
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Wu S, Xue Q, Qin X, Wu X, Kim P, Chyr J, Zhou X, Huang L. The Potential Regulation of A-to-I RNA Editing on Genes in Parkinson's Disease. Genes (Basel) 2023; 14:919. [PMID: 37107677 PMCID: PMC10137963 DOI: 10.3390/genes14040919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration and an abnormal accumulation of α-synuclein aggregates. A number of genetic factors have been shown to increase the risk of PD. Exploring the underlying molecular mechanisms that mediate PD's transcriptomic diversity can help us understand neurodegenerative pathogenesis. In this study, we identified 9897 A-to-I RNA editing events associated with 6286 genes across 372 PD patients. Of them, 72 RNA editing events altered miRNA binding sites and this may directly affect miRNA regulations of their host genes. However, RNA editing effects on the miRNA regulation of genes are more complex. They can (1) abolish existing miRNA binding sites, which allows miRNAs to regulate other genes; (2) create new miRNA binding sites that may sequester miRNAs from regulating other genes; or (3) occur in the miRNA seed regions and change their targets. The first two processes are also referred to as miRNA competitive binding. In our study, we found 8 RNA editing events that may alter the expression of 1146 other genes via miRNA competition. We also found one RNA editing event that modified a miRNA seed region, which was predicted to disturb the regulation of four genes. Considering the PD-related functions of the affected genes, 25 A-to-I RNA editing biomarkers for PD are proposed, including the 3 editing events in the EIF2AK2, APOL6, and miR-4477b seed regions. These biomarkers may alter the miRNA regulation of 133 PD-related genes. All these analyses reveal the potential mechanisms and regulations of RNA editing in PD pathogenesis.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an 710071, China; (S.W.)
| | - Qiuping Xue
- School of Life Science and Technology, Xidian University, Xi’an 710071, China; (S.W.)
| | - Xinyu Qin
- School of Life Science and Technology, Xidian University, Xi’an 710071, China; (S.W.)
| | - Xiaoming Wu
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jacqueline Chyr
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an 710071, China; (S.W.)
| |
Collapse
|
7
|
Wu S, Xue Q, Yang M, Wang Y, Kim P, Zhou X, Huang L. Genetic control of RNA editing in neurodegenerative disease. Brief Bioinform 2023; 24:bbad007. [PMID: 36681936 PMCID: PMC10387301 DOI: 10.1093/bib/bbad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/23/2023] Open
Abstract
A-to-I RNA editing diversifies human transcriptome to confer its functional effects on the downstream genes or regulations, potentially involving in neurodegenerative pathogenesis. Its variabilities are attributed to multiple regulators, including the key factor of genetic variants. To comprehensively investigate the potentials of neurodegenerative disease-susceptibility variants from the view of A-to-I RNA editing, we analyzed matched genetic and transcriptomic data of 1596 samples across nine brain tissues and whole blood from two large consortiums, Accelerating Medicines Partnership-Alzheimer's Disease and Parkinson's Progression Markers Initiative. The large-scale and genome-wide identification of 95 198 RNA editing quantitative trait loci revealed the preferred genetic effects on adjacent editing events. Furthermore, to explore the underlying mechanisms of the genetic controls of A-to-I RNA editing, several top RNA-binding proteins were pointed out, such as EIF4A3, U2AF2, NOP58, FBL, NOP56 and DHX9, since their regulations on multiple RNA-editing events were probably interfered by these genetic variants. Moreover, these variants may also contribute to the variability of other molecular phenotypes associated with RNA editing, including the functions of 3 proteins, expressions of 277 genes and splicing of 449 events. All the analyses results shown in NeuroEdQTL (https://relab.xidian.edu.cn/NeuroEdQTL/) constituted a unique resource for the understanding of neurodegenerative pathogenesis from genotypes to phenotypes related to A-to-I RNA editing.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an 710071, China
| | - Qiuping Xue
- School of Life Science and Technology, Xidian University, Xi’an 710071, China
| | - Mengyuan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfei Wang
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Pora Kim
- Corresponding authors: Liyu Huang, School of Life Science and Technology, Xidian University, Xi’an 710071, China. E-mail: ; Xiaobo Zhou, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail: ; Pora Kim, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail:
| | - Xiaobo Zhou
- Corresponding authors: Liyu Huang, School of Life Science and Technology, Xidian University, Xi’an 710071, China. E-mail: ; Xiaobo Zhou, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail: ; Pora Kim, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail:
| | - Liyu Huang
- Corresponding authors: Liyu Huang, School of Life Science and Technology, Xidian University, Xi’an 710071, China. E-mail: ; Xiaobo Zhou, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail: ; Pora Kim, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
8
|
Mei Y, Liang D, Ai B, Wang T, Guo S, Jin G, Yu D. Genome-wide identification of A-to-I RNA editing events provides the functional implications in PDAC. Front Oncol 2023; 13:1092046. [PMID: 36895481 PMCID: PMC9990869 DOI: 10.3389/fonc.2023.1092046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction RNA editing, a wide-acknowledged post-transcriptional mechanism, has been reported to be involved in the occurrence and development of cancer, especially the abnormal alteration of adenosine to inosine. However, fewer studies focus on pancreaticcancer. Therefore, we aimed to explore the possible linkages between altered RNA editing events and the development of PDAC. Method We characterized the global A-to-I RNA editing spectrum from RNA and matched whole-genome sequencing data of 41 primary PDAC and adjacent normal tissues. The following analyses were performed: different editing level and RNA expression analysis,pathway analysis, motif analysis, RNA secondary structure analysis, alternative splicing events analysis, and survival analysis.The RNA editing of single-cell RNA public sequencing data was also characterized. Result A large number of adaptive RNA editing events with significant differences in editing levels were identified, which are mainly regulated by ADAR1. Moreover, RNA editing in tumors has a higher editing level and more abundant editing sites in general. 140genes were screened out since they were identified with significantly different RNA editing events and were significantly different in expression level between tumor and matched normal samples. Further analysis showed a preference that in the tumor-specific group, they are mainly enriched in cancer-related signal pathways, while in the normal tissue-specific group, they are mainly enriched in pancreatic secretion. At the same time, we also found positively selected differentially edited sites in a series of cancer immune genes, including EGF, IGF1R, and PIK3CD. RNA editing might participate in pathogenisis of PDAC through regulating the alternative splicing and RNA secondary structure of important genesto further regulate gene expression and protein synthesis, including RAB27B and CERS4. Furthermore, single cell sequencing results showed that type2 ductal cells contributed the most to RNA editing events in tumors. Conclusion RNA editing is an epigenetic mechanism involved in the occurrence and development of pancreatic cancer, which has the potential to diagnose of PDAC and is closely related to the prognosis.
Collapse
Affiliation(s)
- Yue Mei
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Dong Liang
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Bin Ai
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Tengjiao Wang
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Shiwei Guo
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong Yu
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| |
Collapse
|
9
|
Tarozzi M, Baiardi S, Sala C, Bartoletti-Stella A, Parchi P, Capellari S, Castellani G. Genomic, transcriptomic and RNA editing analysis of human MM1 and VV2 sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun 2022; 10:181. [PMID: 36517866 PMCID: PMC9749175 DOI: 10.1186/s40478-022-01483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is characterized by a broad phenotypic spectrum regarding symptoms, progression, and molecular features. Current sporadic CJD (sCJD) classification recognizes six main clinical-pathological phenotypes. This work investigates the molecular basis of the phenotypic heterogeneity of prion diseases through a multi-omics analysis of the two most common sCJD subtypes: MM1 and VV2. We performed DNA target sequencing on 118 genes on a cohort of 48 CJD patients and full exome RNA sequencing on post-mortem frontal cortex tissue on a subset of this cohort. DNA target sequencing identified multiple potential genetic contributors to the disease onset and phenotype, both in terms of coding, damaging-predicted variants, and enriched groups of SNPs in the whole cohort and the two subtypes. The results highlight a different functional impairment, with VV2 associated with higher impairment of the pathways related to dopamine secretion, regulation of calcium release and GABA signaling, showing some similarities with Parkinson's disease both on a genomic and a transcriptomic level. MM1 showed a gene expression profile with several traits shared with different neurodegenerative, without an apparent distinctive characteristic or similarities with a specific disease. In addition, integrating genomic and transcriptomic data led to the discovery of several sites of ADAR-mediated RNA editing events, confirming and expanding previous findings in animal models. On the transcriptomic level, this work represents the first application of RNA sequencing on CJD human brain samples. Here, a good clusterization of the transcriptomic profiles of the two subtypes was achieved, together with the finding of several differently impaired pathways between the two subtypes. The results add to the understanding of the molecular features associated with sporadic CJD and its most common subtypes, revealing strain-specific genetic signatures and functional similarities between VV2 and Parkinson's disease and providing preliminary evidence of RNA editing modifications in human sCJD.
Collapse
Affiliation(s)
- Martina Tarozzi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Simone Baiardi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy ,grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Claudia Sala
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Anna Bartoletti-Stella
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Piero Parchi
- grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Sabina Capellari
- grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Gastone Castellani
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
10
|
Shafik AM, Allen EG, Jin P. Epitranscriptomic dynamics in brain development and disease. Mol Psychiatry 2022; 27:3633-3646. [PMID: 35474104 PMCID: PMC9596619 DOI: 10.1038/s41380-022-01570-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
Distinct cell types are generated at specific times during brain development and are regulated by epigenetic, transcriptional, and newly emerging epitranscriptomic mechanisms. RNA modifications are known to affect many aspects of RNA metabolism and have been implicated in the regulation of various biological processes and in disease. Recent studies imply that dysregulation of the epitranscriptome may be significantly associated with neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. Here we review the current knowledge surrounding the role of the RNA modifications N6-methyladenosine, 5-methylcytidine, pseudouridine, A-to-I RNA editing, 2'O-methylation, and their associated machinery, in brain development and human diseases. We also highlight the need for the development of new technologies in the pursuit of directly mapping RNA modifications in both genome- and single-molecule-level approach.
Collapse
Affiliation(s)
- Andrew M Shafik
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Loss of Ca V1.3 RNA editing enhances mouse hippocampal plasticity, learning, and memory. Proc Natl Acad Sci U S A 2022; 119:e2203883119. [PMID: 35914168 PMCID: PMC9371748 DOI: 10.1073/pnas.2203883119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
L-type CaV1.3 calcium channels are expressed on the dendrites and soma of neurons, and there is a paucity of information about its role in hippocampal plasticity. Here, by genetic targeting to ablate CaV1.3 RNA editing, we demonstrate that unedited CaV1.3ΔECS mice exhibited improved learning and enhanced long-term memory, supporting a functional role of RNA editing in behavior. Significantly, the editing paradox that functional recoding of CaV1.3 RNA editing sites slows Ca2+-dependent inactivation to increase Ca2+ influx but reduces channel open probability to decrease Ca2+ influx was resolved. Mechanistically, using hippocampal slice recordings, we provide evidence that unedited CaV1.3 channels permitted larger Ca2+ influx into the hippocampal pyramidal neurons to bolster neuronal excitability, synaptic transmission, late long-term potentiation, and increased dendritic arborization. Of note, RNA editing of the CaV1.3 IQ-domain was found to be evolutionarily conserved in mammals, which lends support to the importance of the functional recoding of the CaV1.3 channel in brain function.
Collapse
|
12
|
Wu X, Chu M, Ma X, Pei J, Xiong L, Guo X, Liang C, Yan P. Genome-Wide Identification of RNA Editing Sites Affecting Muscle Development in Yak. Front Vet Sci 2022; 9:871814. [PMID: 35836505 PMCID: PMC9274240 DOI: 10.3389/fvets.2022.871814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle growth and development is a complicated process that is regulated at multiple steps and by numerous myogenesis genes. RNA editing represents one of the events at the post-transcriptional level, which contributes to the diversity of transcriptome and proteome by altering the nucleotides of RNAs. However, RNA editing events in the skeletal muscle of yaks are still not well defined. This study conducted whole-genome RNA-editing identification in skeletal muscle of yaks at embryonic stage (ES) and adult stage (AS). We found a total of 11,168 unique RNA editing sites, most of which were detected in the intergenic region. After annotation, we totally identified 2,718 editing sites within coding regions, among which 858 were missense changes. Moreover, totally 322 editing sites in the 3′ untranslated regions (UTR) were also predicted to alter the set of miRNA target sites, indicating that RNA editing may be involved in translational repression or mRNA degradation. We found 838 RNA editing sites (involving 244 common genes) that are edited differentially in ES as compared to AS. According to the KEGG enrichment analysis, these differentially edited genes were mainly involved in pathways highly related to skeletal muscle development and myogenesis, including MAPK, AMPK, Wnt, and PI3K-Akt signaling pathways. Altogether, our work presents the first characterization of RNA editing sites within yak skeletal muscles on a genome-wide scale and enhances our understanding of the mechanism of skeletal muscle development and myogenesis.
Collapse
|
13
|
Jiapaer Z, Su D, Hua L, Lehmann HI, Gokulnath P, Vulugundam G, Song S, Zhang L, Gong Y, Li G. Regulation and roles of RNA modifications in aging-related diseases. Aging Cell 2022; 21:e13657. [PMID: 35718942 PMCID: PMC9282851 DOI: 10.1111/acel.13657] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/03/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
With the aging of the global population, accumulating interest is focused on manipulating the fundamental aging-related signaling pathways to delay the physiological aging process and eventually slow or prevent the appearance or severity of multiple aging-related diseases. Recently, emerging evidence has shown that RNA modifications, which were historically considered infrastructural features of cellular RNAs, are dynamically regulated across most of the RNA species in cells and thereby critically involved in major biological processes, including cellular senescence and aging. In this review, we summarize the current knowledge about RNA modifications and provide a catalog of RNA modifications on different RNA species, including mRNAs, miRNAs, lncRNA, tRNAs, and rRNAs. Most importantly, we focus on the regulation and roles of these RNA modifications in aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, cataracts, osteoporosis, and fertility decline. This would be an important step toward a better understanding of fundamental aging mechanisms and thereby facilitating the development of novel diagnostics and therapeutics for aging-related diseases.
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Dingwen Su
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Helge Immo Lehmann
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gururaja Vulugundam
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Naples, Italy
| | - Shannan Song
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Lingying Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Cellular and genetic drivers of RNA editing variation in the human brain. Nat Commun 2022; 13:2997. [PMID: 35637184 PMCID: PMC9151768 DOI: 10.1038/s41467-022-30531-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Posttranscriptional adenosine-to-inosine modifications amplify the functionality of RNA molecules in the brain, yet the cellular and genetic regulation of RNA editing is poorly described. We quantify base-specific RNA editing across three major cell populations from the human prefrontal cortex: glutamatergic neurons, medial ganglionic eminence-derived GABAergic neurons, and oligodendrocytes. We identify more selective editing and hyper-editing in neurons relative to oligodendrocytes. RNA editing patterns are highly cell type-specific, with 189,229 cell type-associated sites. The cellular specificity for thousands of sites is confirmed by single nucleus RNA-sequencing. Importantly, cell type-associated sites are enriched in GTEx RNA-sequencing data, edited ~twentyfold higher than all other sites, and variation in RNA editing is largely explained by neuronal proportions in bulk brain tissue. Finally, we uncover 661,791 cis-editing quantitative trait loci across thirteen brain regions, including hundreds with cell type-associated features. These data reveal an expansive repertoire of highly regulated RNA editing sites across human brain cell types and provide a resolved atlas linking cell types to editing variation and genetic regulatory effects. Here the authors provide a deep catalogue of cell-specific A-to-I editing sites in the human cortex. Thousands of sites are enriched and elevated in neurons relative to glial cells, and are genetically regulated across multiple brain regions.
Collapse
|
15
|
Karagianni K, Pettas S, Christoforidou G, Kanata E, Bekas N, Xanthopoulos K, Dafou D, Sklaviadis T. A Systematic Review of Common and Brain-Disease-Specific RNA Editing Alterations Providing Novel Insights into Neurological and Neurodegenerative Disease Manifestations. Biomolecules 2022; 12:biom12030465. [PMID: 35327657 PMCID: PMC8946084 DOI: 10.3390/biom12030465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
RNA editing contributes to transcriptome diversification through RNA modifications in relation to genome-encoded information (RNA–DNA differences, RDDs). The deamination of Adenosine (A) to Inosine (I) or Cytidine (C) to Uridine (U) is the most common type of mammalian RNA editing. It occurs as a nuclear co- and/or post-transcriptional event catalyzed by ADARs (Adenosine deaminases acting on RNA) and APOBECs (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like genes). RNA editing may modify the structure, stability, and processing of a transcript. This review focuses on RNA editing in psychiatric, neurological, neurodegenerative (NDs), and autoimmune brain disorders in humans and rodent models. We discuss targeted studies that focus on RNA editing in specific neuron-enriched transcripts with well-established functions in neuronal activity, and transcriptome-wide studies, enabled by recent technological advances. We provide comparative editome analyses between human disease and corresponding animal models. Data suggest RNA editing to be an emerging mechanism in disease development, displaying common and disease-specific patterns. Commonly edited RNAs represent potential disease-associated targets for therapeutic and diagnostic values. Currently available data are primarily descriptive, calling for additional research to expand global editing profiles and to provide disease mechanistic insights. The potential use of RNA editing events as disease biomarkers and available tools for RNA editing identification, classification, ranking, and functional characterization that are being developed will enable comprehensive analyses for a better understanding of disease(s) pathogenesis and potential cures.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Spyros Pettas
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Georgia Christoforidou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Eirini Kanata
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Nikolaos Bekas
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Konstantinos Xanthopoulos
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
- Correspondence:
| | - Theodoros Sklaviadis
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| |
Collapse
|
16
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|