Achiron A, Falb R, Menascu S, Magalashvili D, Mandel M, Sonis P, Gurevich M. Deciphering the shift from benign to active relapsing-remitting multiple sclerosis: Insights into T regulatory cell dysfunction and apoptosis regulation.
Neurobiol Dis 2024;
194:106475. [PMID:
38521093 DOI:
10.1016/j.nbd.2024.106475]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND
Relapsing-remitting multiple sclerosis (RRMS), a common demyelinating disease among young adults, follows a benign course in 10-15% of cases, where patients experience minimal neurological disability for a decade following disease onset. However, there is potential for these benign cases to transition into a clinically active, relapsing state.
OBJECTIVE
To elucidate the biological mechanisms underlying the transition from benign to active RRMS using gene expression analysis.
METHODS
We employed complementary-DNA microarrays to examine peripheral-blood gene expression patterns in patients with benign MS, defined as having a disease duration exceeding 10 years and an Expanded Disability Status Scale (EDSS) score of ≤3.0. We compared the gene expression pattern between patients who switched to active disease (Switching BMS) with those who maintained a benign state (Permanent-BMS) during an additional 5-year follow-up.
RESULTS
We identified two primary mechanisms linked to the transition from benign MS to clinically active disease. The first involves the suppression of regulatory T cell activity, and the second pertains to the dysfunction of nuclear receptor 4 A family-dependent apoptosis. These mechanisms collectively contribute to an augmented autoimmune response and increased disease activity.
CONCLUSIONS
The intricate gene regulatory networks that operate in switching-BMS are related to suppression of immune tolerance and aberrant apoptosis. These findings may lead to new therapeutic targets to prevent the escalation to active disease.
Collapse