1
|
Hassanali Aragh A, Moslemi Amirani R, Givehchian P, Eskafi M, Abbasian Bajgiran Y, Eslahchi C. MiRAGE-DTI: A novel approach for drug-target interaction prediction by integrating drug and target similarity metrics. Comput Biol Med 2025; 192:110249. [PMID: 40359678 DOI: 10.1016/j.compbiomed.2025.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
MOTIVATION Accurately predicting drug-target interactions (DTIs) is critical for accelerating drug discovery, repositioning, and development. Traditional experimental methods are often expensive and time-consuming, emphasizing the need for efficient computational models to streamline these processes. To address this challenge, we developed MiRAGE-DTI, a novel computational framework that integrates diverse drug and target similarity measures with robust machine learning techniques to achieve superior predictive accuracy. RESULTS MiRAGE-DTI introduces a novel framework that integrates structural, functional, and interaction-based features into a unified model. Leveraging the strengths of Random Forest classifiers, MiRAGE-DTI ensures robust and interpretable predictions while addressing challenges such as class imbalance and data variability. Comprehensive evaluations across multiple benchmark datasets, including GPCR, IC, NR, and Enzyme, reveal that MiRAGE-DTI consistently outperforms state-of-the-art algorithms such as DTI-CNN, GCNMDA, MVGCN, MMGCN, GraphCDA, DTINet, and MIDTI. It achieves significant improvements in key metrics such as AUROC, AUPR, and accuracy. To validate its predictions, molecular docking studies were conducted, highlighting strong binding affinities for key drug-target interactions, including Oxandrolone-PGR and Metyrapone-CYP2E1, which demonstrate high therapeutic potential. Beyond predictive accuracy, MiRAGE-DTI has practical implications in drug repositioning and personalized medicine, as well as the potential to streamline preclinical workflows. Its ability to uncover novel drug-target relationships enhances the understanding of molecular mechanisms underlying diseases, paving the way for innovative therapeutic strategies. Furthermore, by predicting off-target interactions and potential side effects, MiRAGE-DTI contributes to improving drug safety profiles and regulatory evaluations. CONCLUSION MiRAGE-DTI represents a versatile and powerful tool for advancing drug discovery and development. Its ability to identify novel therapeutic opportunities, repurpose existing drugs, and enable precision medicine highlights its transformative potential in tackling unmet medical needs. The framework's robust performance, validated predictions, and wide-ranging practical applications position MiRAGE-DTI as a critical resource for modern drug discovery.
Collapse
Affiliation(s)
- Aria Hassanali Aragh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Razieh Moslemi Amirani
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Pegah Givehchian
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Maryam Eskafi
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | | | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 193955746, Iran.
| |
Collapse
|
2
|
Wang Y, Wang B, Zou J, Wu A, Liu Y, Wan Y, Luo J, Wu J. Capsule neural network and its applications in drug discovery. iScience 2025; 28:112217. [PMID: 40241764 PMCID: PMC12002614 DOI: 10.1016/j.isci.2025.112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Deep learning holds great promise in drug discovery, yet its application is hindered by high labeling costs and limited datasets. Developing algorithms that effectively learn from sparsely labeled data is crucial. Capsule networks (CapsNet), introduced in 2017, solve the spatial information loss in traditional neural networks and excel in handling small datasets by capturing spatial hierarchical relationships among features. This capability makes CapsNet particularly promising for drug discovery, where data scarcity is a common challenge. Various modified CapsNet architectures have been successfully applied to drug design and discovery tasks. This review provides a comprehensive analysis of CapsNet's theoretical foundations, its current applications in drug discovery, and its performance in addressing key challenges in the field. Additionally, the study highlights the limitations of CapsNet and outlines potential future research directions to further enhance its utility in drug discovery, offering valuable insights for researchers in both computational and pharmaceutical sciences.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jun Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Yue R, Dutta A. Repurposing Drugs for Infectious Diseases by Graph Convolutional Network with Sensitivity-Based Graph Reduction. Interdiscip Sci 2025; 17:185-199. [PMID: 39630350 DOI: 10.1007/s12539-024-00672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 02/19/2025]
Abstract
Computational systems biology employs computational algorithms and integrates diverse data sources, such as gene expression profiles, molecular interactions, and network modeling, to identify promising drug candidates through repurposing existing compounds in response to urgent healthcare needs. This study tackles the urgent need for rapid therapeutic development against emerging infectious diseases. We introduce a novel analytic expression for sensitivity analysis based on the Kronecker product and enhance model prediction performance using Graph Convolutional Networks (GCNs) with sensitivity-based graph reduction. Our algorithm refines prediction performance by leveraging sensitivity-based graph reduction. By integrating RNA-seq data, molecular interactions, and GCNs, we identify disease-related genes and pathways, construct heterogeneous graph models, and predict potential drugs. This approach involves novel analytical expressions that assess sensitivity to model loss, employing the Kronecker product approach. Subgraph analysis identifies nodes for removal, leading to a refined graph used for model retraining. This cost-effective pipeline focuses on computational methods for drug repurposing, targeting infectious diseases such as Zika virus and COVID-19 infection. Applied to these infections, our methodology integrates 659 proteins and 703 drugs for Zika virus, and 495 proteins and 468 drugs for COVID-19, along with their interactions derived from gene expression profiles. Top candidate drugs, such as Betamethasone phosphate and Bizelesin for Zika virus, and Chloroquine, Heparin Disaccharide, and Resveratrol for COVID-19, were validated through literature review or docking analysis. This scalable approach demonstrates promise in repurposing drugs for urgent healthcare challenges.
Collapse
Affiliation(s)
- Rongting Yue
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, 06269, USA.
| | - Abhishek Dutta
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, 06269, USA
| |
Collapse
|
4
|
Tian Z, Zhang Z, Zhou W, Teng Z, Song W, Zou Q. DSANIB: Drug-Target Interaction Predictions With Dual-View Synergistic Attention Network and Information Bottleneck Strategy. IEEE J Biomed Health Inform 2025; 29:1484-1493. [PMID: 40030194 DOI: 10.1109/jbhi.2024.3497591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Prediction of drug-target interactions (DTIs) is one of the crucial steps for drug repositioning. Identifying DTIs through bio-experimental manners is always expensive and time-consuming. Recently, deep learning-based approaches have shown promising advancements in DTI prediction, but they face two notable challenges: (i) how to explicitly capture local interactions between drug-target pairs and learn their higher-order substructure embeddings; (ii) How to filter out redundant information to obtain effective embeddings for drugs and targets. Results: In this study, we propose a novel approach, termed DSANIB, to infer potential interactions between drugs and targets. DSANIB comprises two primary components: (1) DSAN component: The Inter-view Attention Network Module explicitly learns the local interactions between drugs and targets, while the Intra-view Attention Network Module aggregates information from local interaction features to obtain their higher-order substructure embeddings. (2) Information Bottleneck (IB) component: DSANIB adopts the IB strategy, which could retain relevant information while minimizing the redundant features to obtain their discriminative representations. Extensive experimental results demonstrate that DSANIB outperforms other SOTA prediction models. In addition, visualization of drug and target embeddings learned through DSANIB could provide interpretable insights for the prediction results.
Collapse
|
5
|
Xie Y, Wang X, Wang P, Bi X. A pseudo-label supervised graph fusion attention network for drug–target interaction prediction. EXPERT SYSTEMS WITH APPLICATIONS 2025; 259:125264. [DOI: 10.1016/j.eswa.2024.125264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zhang M, Hong Y, Shen L, Xu S, Xu Y, Zhang X, Liu J, Liu X. A heterogeneous graph neural network with automatic discovery of effective metapaths for drug–target interaction prediction. FUTURE GENERATION COMPUTER SYSTEMS 2024; 160:283-294. [DOI: 10.1016/j.future.2024.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Li Y, Zhang X, Chen Z, Yang H, Liu Y, Wang H, Yan T, Xiang J, Wang B. Accurate prediction of drug-target interactions in Chinese and western medicine by the CWI-DTI model. Sci Rep 2024; 14:25054. [PMID: 39443630 PMCID: PMC11499656 DOI: 10.1038/s41598-024-76367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Accurate prediction of drug-target interactions (DTIs) is crucial for advancing drug discovery and repurposing. Computational methods have significantly improved the efficiency of experimental predictions for drug-target interactions in Western medicine. However, accurately predicting the complex relationships between Chinese medicine ingredients and targets remains a formidable challenge due to the vast number and high heterogeneity of these ingredients. In this study, we introduce the CWI-DTI method, which achieves high-accuracy prediction of DTIs using a large dataset of interactive relationships of drug ingredients or candidate targets. Moreover, we present a novel dataset to evaluate the prediction accuracy of both Chinese and Western medicine. Through meticulous collection and preprocessing of data on ingredients and targets, we employ an innovative autoencoder framework to fuse multiple drug (target) topological similarity matrices. Additionally, we employ denoising blocks, sparse blocks, and stacked blocks to extract crucial features from the similarity matrix, reducing noise and enhancing accuracy across diverse datasets. Our results indicate that the CWI-DTI model shows improved performance compared to several existing state-of-the-art methods on the datasets tested in both Western and Chinese medicine databases. The findings of this study hold immense promise for advancing DTI prediction in Chinese and Western medicine, thus fostering more efficient drug discovery and repurposing endeavors. Our model is available at https://github.com/WANG-BIN-LAB/CWIDTI .
Collapse
Affiliation(s)
- Ying Li
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Xingyu Zhang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Zhuo Chen
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Hongye Yang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Yuhui Liu
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Huiqing Wang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Ting Yan
- Department of Pathology, Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Jie Xiang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
8
|
Lavecchia A. Advancing drug discovery with deep attention neural networks. Drug Discov Today 2024; 29:104067. [PMID: 38925473 DOI: 10.1016/j.drudis.2024.104067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
In the dynamic field of drug discovery, deep attention neural networks are revolutionizing our approach to complex data. This review explores the attention mechanism and its extended architectures, including graph attention networks (GATs), transformers, bidirectional encoder representations from transformers (BERT), generative pre-trained transformers (GPTs) and bidirectional and auto-regressive transformers (BART). Delving into their core principles and multifaceted applications, we uncover their pivotal roles in catalyzing de novo drug design, predicting intricate molecular properties and deciphering elusive drug-target interactions. Despite challenges, these attention-based architectures hold unparalleled promise to drive transformative breakthroughs and accelerate progress in pharmaceutical research.
Collapse
Affiliation(s)
- Antonio Lavecchia
- Drug Discovery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Naples, Italy.
| |
Collapse
|
9
|
Wu H, Liu J, Zhang R, Lu Y, Cui G, Cui Z, Ding Y. A review of deep learning methods for ligand based drug virtual screening. FUNDAMENTAL RESEARCH 2024; 4:715-737. [PMID: 39156568 PMCID: PMC11330120 DOI: 10.1016/j.fmre.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 08/20/2024] Open
Abstract
Drug discovery is costly and time consuming, and modern drug discovery endeavors are progressively reliant on computational methodologies, aiming to mitigate temporal and financial expenditures associated with the process. In particular, the time required for vaccine and drug discovery is prolonged during emergency situations such as the coronavirus 2019 pandemic. Recently, the performance of deep learning methods in drug virtual screening has been particularly prominent. It has become a concern for researchers how to summarize the existing deep learning in drug virtual screening, select different models for different drug screening problems, exploit the advantages of deep learning models, and further improve the capability of deep learning in drug virtual screening. This review first introduces the basic concepts of drug virtual screening, common datasets, and data representation methods. Then, large numbers of common deep learning methods for drug virtual screening are compared and analyzed. In addition, a dataset of different sizes is constructed independently to evaluate the performance of each deep learning model for the difficult problem of large-scale ligand virtual screening. Finally, the existing challenges and future directions in the field of virtual screening are presented.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runhua Zhang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoyao Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guozeng Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
10
|
Zhang Y, Liu C, Liu M, Liu T, Lin H, Huang CB, Ning L. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform 2023; 25:bbad467. [PMID: 38189543 PMCID: PMC10772984 DOI: 10.1093/bib/bbad467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Mujiexin Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Liu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Lin Ning
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|
11
|
Li X, Yang Q, Luo G, Xu L, Dong W, Wang W, Dong S, Wang K, Xuan P, Gao X. SAGDTI: self-attention and graph neural network with multiple information representations for the prediction of drug-target interactions. BIOINFORMATICS ADVANCES 2023; 3:vbad116. [PMID: 38282612 PMCID: PMC10818136 DOI: 10.1093/bioadv/vbad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 01/30/2024]
Abstract
Motivation Accurate identification of target proteins that interact with drugs is a vital step in silico, which can significantly foster the development of drug repurposing and drug discovery. In recent years, numerous deep learning-based methods have been introduced to treat drug-target interaction (DTI) prediction as a classification task. The output of this task is binary identification suggesting the absence or presence of interactions. However, existing studies often (i) neglect the unique molecular attributes when embedding drugs and proteins, and (ii) determine the interaction of drug-target pairs without considering biological interaction information. Results In this study, we propose an end-to-end attention-derived method based on the self-attention mechanism and graph neural network, termed SAGDTI. The aim of this method is to overcome the aforementioned drawbacks in the identification of DTI. SAGDTI is the first method to sufficiently consider the unique molecular attribute representations for both drugs and targets in the input form of the SMILES sequences and three-dimensional structure graphs. In addition, our method aggregates the feature attributes of biological information between drugs and targets through multi-scale topologies and diverse connections. Experimental results illustrate that SAGDTI outperforms existing prediction models, which benefit from the unique molecular attributes embedded by atom-level attention and biological interaction information representation aggregated by node-level attention. Moreover, a case study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shows that our model is a powerful tool for identifying DTIs in real life. Availability and implementation The data and codes underlying this article are available in Github at https://github.com/lixiaokun2020/SAGDTI.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin 150090, China
| | - Qiang Yang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin 150090, China
| | - Gongning Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Long Xu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin 150090, China
| | - Weihe Dong
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin 150090, China
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Wei Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Suyu Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
12
|
Sinha K, Ghosh N, Sil PC. A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies. Chem Res Toxicol 2023; 36:1174-1205. [PMID: 37561655 DOI: 10.1021/acs.chemrestox.2c00375] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Drug toxicity prediction is an important step in ensuring patient safety during drug design studies. While traditional preclinical studies have historically relied on animal models to evaluate toxicity, recent advances in deep-learning approaches have shown great promise in advancing drug safety science and reducing animal use in preclinical studies. However, deep-learning-based approaches also face challenges in handling large biological data sets, model interpretability, and regulatory acceptance. In this review, we provide an overview of recent developments in deep-learning-based approaches for predicting drug toxicity, highlighting their potential advantages over traditional methods and the need to address their limitations. Deep-learning models have demonstrated excellent performance in predicting toxicity outcomes from various data sources such as chemical structures, genomic data, and high-throughput screening assays. The potential of deep learning for automated feature engineering is also discussed. This review emphasizes the need to address ethical concerns related to the use of deep learning in drug toxicity studies, including the reduction of animal use and ensuring regulatory acceptance. Furthermore, emerging applications of deep learning in drug toxicity prediction, such as predicting drug-drug interactions and toxicity in rare subpopulations, are highlighted. The integration of deep-learning-based approaches with traditional methods is discussed as a way to develop more reliable and efficient predictive models for drug safety assessment, paving the way for safer and more effective drug discovery and development. Overall, this review highlights the critical role of deep learning in predictive toxicology and drug safety evaluation, emphasizing the need for continued research and development in this rapidly evolving field. By addressing the limitations of traditional methods, leveraging the potential of deep learning for automated feature engineering, and addressing ethical concerns, deep-learning-based approaches have the potential to revolutionize drug toxicity prediction and improve patient safety in drug discovery and development.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, West Bengal, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| |
Collapse
|
13
|
Guo Y, Zhou D, Ruan X, Cao J. Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features. Neural Netw 2023; 165:491-505. [PMID: 37336034 DOI: 10.1016/j.neunet.2023.05.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023]
Abstract
MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.
Collapse
Affiliation(s)
- Yanbu Guo
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Dongming Zhou
- School of Information Science and Engineering, Yunnan University, Kunming 650500, China.
| | - Xiaoli Ruan
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China.
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing 211189, China; Yonsei Frontier Lab, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
14
|
Yuan L, Zhao J, Shen Z, Zhang Q, Geng Y, Zheng CH, Huang DS. iCircDA-NEAE: Accelerated attribute network embedding and dynamic convolutional autoencoder for circRNA-disease associations prediction. PLoS Comput Biol 2023; 19:e1011344. [PMID: 37651321 PMCID: PMC10470932 DOI: 10.1371/journal.pcbi.1011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
Accumulating evidence suggests that circRNAs play crucial roles in human diseases. CircRNA-disease association prediction is extremely helpful in understanding pathogenesis, diagnosis, and prevention, as well as identifying relevant biomarkers. During the past few years, a large number of deep learning (DL) based methods have been proposed for predicting circRNA-disease association and achieved impressive prediction performance. However, there are two main drawbacks to these methods. The first is these methods underutilize biometric information in the data. Second, the features extracted by these methods are not outstanding to represent association characteristics between circRNAs and diseases. In this study, we developed a novel deep learning model, named iCircDA-NEAE, to predict circRNA-disease associations. In particular, we use disease semantic similarity, Gaussian interaction profile kernel, circRNA expression profile similarity, and Jaccard similarity simultaneously for the first time, and extract hidden features based on accelerated attribute network embedding (AANE) and dynamic convolutional autoencoder (DCAE). Experimental results on the circR2Disease dataset show that iCircDA-NEAE outperforms other competing methods significantly. Besides, 16 of the top 20 circRNA-disease pairs with the highest prediction scores were validated by relevant literature. Furthermore, we observe that iCircDA-NEAE can effectively predict new potential circRNA-disease associations.
Collapse
Affiliation(s)
- Lin Yuan
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| | - Jiawang Zhao
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| | - Zhen Shen
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, China
| | - Qinhu Zhang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
| | - Yushui Geng
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| | - Chun-Hou Zheng
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, China
| | - De-Shuang Huang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
| |
Collapse
|
15
|
Ren ZH, You ZH, Zou Q, Yu CQ, Ma YF, Guan YJ, You HR, Wang XF, Pan J. DeepMPF: deep learning framework for predicting drug-target interactions based on multi-modal representation with meta-path semantic analysis. J Transl Med 2023; 21:48. [PMID: 36698208 PMCID: PMC9876420 DOI: 10.1186/s12967-023-03876-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, plenty of computational methods are conducted to effectively complement biological experiments and narrow the search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider association behavior semantic information based on several schemas to represent complex the structure of heterogeneous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand for prediction accuracy. METHODS We propose a multi-modal representation framework of 'DeepMPF' based on meta-path semantic analysis, which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein-drug-disease heterogeneous networks composed of three entities. Then the feature information is obtained under three views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature descriptors and calculates the probability of interaction through joint learning. RESULTS To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the different feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug repositioning experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates predicted by DeepMPF. CONCLUSIONS All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of the DeepMPF predictor is freely available at http://120.77.11.78/DeepMPF/ , which can help relevant researchers to further study.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Zhu-Hong You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Quan Zou
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Chang-Qing Yu
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Yan-Fang Ma
- grid.417234.70000 0004 1808 3203Department of Galactophore, The Third People’s Hospital of Gansu Province, Lanzhou, 730020 China
| | - Yong-Jian Guan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Hai-Ru You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Xin-Fei Wang
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Jie Pan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| |
Collapse
|
16
|
Tian Z, Peng X, Fang H, Zhang W, Dai Q, Ye Y. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms. Brief Bioinform 2022; 23:6761042. [PMID: 36242566 DOI: 10.1093/bib/bbac434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION Discovering the drug-target interactions (DTIs) is a crucial step in drug development such as the identification of drug side effects and drug repositioning. Since identifying DTIs by web-biological experiments is time-consuming and costly, many computational-based approaches have been proposed and have become an efficient manner to infer the potential interactions. Although extensive effort is invested to solve this task, the prediction accuracy still needs to be improved. More especially, heterogeneous network-based approaches do not fully consider the complex structure and rich semantic information in these heterogeneous networks. Therefore, it is still a challenge to predict DTIs efficiently. RESULTS In this study, we develop a novel method via Multiview heterogeneous information network embedding with Hierarchical Attention mechanisms to discover potential Drug-Target Interactions (MHADTI). Firstly, MHADTI constructs different similarity networks for drugs and targets by utilizing their multisource information. Combined with the known DTI network, three drug-target heterogeneous information networks (HINs) with different views are established. Secondly, MHADTI learns embeddings of drugs and targets from multiview HINs with hierarchical attention mechanisms, which include the node-level, semantic-level and graph-level attentions. Lastly, MHADTI employs the multilayer perceptron to predict DTIs with the learned deep feature representations. The hierarchical attention mechanisms could fully consider the importance of nodes, meta-paths and graphs in learning the feature representations of drugs and targets, which makes their embeddings more comprehensively. Extensive experimental results demonstrate that MHADTI performs better than other SOTA prediction models. Moreover, analysis of prediction results for some interested drugs and targets further indicates that MHADTI has advantages in discovering DTIs. AVAILABILITY AND IMPLEMENTATION https://github.com/pxystudy/MHADTI.
Collapse
Affiliation(s)
- Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Xiangyu Peng
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Haichuan Fang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Wenjie Zhang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Qiguo Dai
- School of Computer Science and Engineering, Dalian Minzu University, Dalian,116600, China
| | - Yangdong Ye
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
17
|
Wang Y, Qin B, Li Z, Li D, Hu F, Zhang H, Yu L. Analysis of reaction between vitamin B 6 and bovine serum albumin based on a terahertz metamaterial sensor. APPLIED OPTICS 2022; 61:7978-7984. [PMID: 36255918 DOI: 10.1364/ao.468719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
A four-peak terahertz metamaterial sensor was used to detect the reaction between different concentrations of vitamin B6 (VB6) and bovine serum albumin (BSA), which achieves a concentration range (0.015-0.125 mg/µl) of VB6 and a maximum binding concentration (0.05 mg/µl) of VB6 and 0.0875 mg/µl BSA. To understand the combination of VB6 and BSA, the reactants between VB (VB1, VB3, and VB5) with the same concentration (0.05 mg/µl) and a BSA solution with a concentration of 0.0875 mg/µl were carried on the surface of the sensor. Experimental results show that the reactants cause the four resonance peaks of the sensor to produce the coincident redshift, which is the same as the order of their binding coefficients determined by the fluorescence method. The experimental process indicates that it is feasible to use terahertz metamaterials to detect the reaction process of organic matter.
Collapse
|