1
|
Sakkal M, Hajal AA. Machine learning predictions of tumor progression: How reliable are we? Comput Biol Med 2025; 191:110156. [PMID: 40245687 DOI: 10.1016/j.compbiomed.2025.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/06/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Cancer continues to pose significant challenges in healthcare due to the complex nature of tumor progression. In this digital era, artificial intelligence has emerged as a powerful tool that can potentially transform multiple aspects of cancer care. METHODS In the current study, we conducted a comprehensive literature search across databases such as PubMed, Scopus, and IEEE Xplore. Studies published between 2014 and 2024 were considered. The selection process involved a systematic screening based on predefined inclusion and exclusion criteria. Studies were included if they focused on applying machine learning techniques for tumor progression modeling, diagnosis, or prognosis, were published in peer-reviewed journals or conference proceedings, were available in English, and presented experimental results, simulations, or real-world applications. In total, 87 papers were included in this review, ensuring a diverse and representative analysis of the field. A workflow is included to illustrate the procedure followed to achieve this aim. RESULTS This review delves into the cutting-edge applications of machine learning (ML), including supervised learning methods like Support Vector Machines and Random Forests, as well as advanced deep learning (DL). It focuses on the integration of ML into oncological research, particularly its application in tumor progression through the tumor microenvironment, genetic data, histopathological data, and radiological data. This work provides a critical analysis of the challenges associated with the reliability and accuracy of ML models, which limit their clinical integration. CONCLUSION This review offers expert insights and strategies to address these challenges in order to improve the robustness and applicability of ML in real-world oncology settings. By emphasizing the potential for personalized cancer treatment and bridging gaps between technology and clinical needs, this review serves as a comprehensive resource for advancing the integration of ML models into clinical oncology.
Collapse
Affiliation(s)
- Molham Sakkal
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Abdallah Abou Hajal
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Goel I, Bhaskar Y, Kumar N, Singh S, Amanullah M, Dhar R, Karmakar S. Role of AI in empowering and redefining the oncology care landscape: perspective from a developing nation. Front Digit Health 2025; 7:1550407. [PMID: 40103737 PMCID: PMC11913822 DOI: 10.3389/fdgth.2025.1550407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Early diagnosis and accurate prognosis play a pivotal role in the clinical management of cancer and in preventing cancer-related mortalities. The burgeoning population of Asia in general and South Asian countries like India in particular pose significant challenges to the healthcare system. Regrettably, the demand for healthcare services in India far exceeds the available resources, resulting in overcrowded hospitals, prolonged wait times, and inadequate facilities. The scarcity of trained manpower in rural settings, lack of awareness and low penetrance of screening programs further compounded the problem. Artificial Intelligence (AI), driven by advancements in machine learning, deep learning, and natural language processing, can profoundly transform the underlying shortcomings in the healthcare industry, more for populous nations like India. With about 1.4 million cancer cases reported annually and 0.9 million deaths, India has a significant cancer burden that surpassed several nations. Further, India's diverse and large ethnic population is a data goldmine for healthcare research. Under these circumstances, AI-assisted technology, coupled with digital health solutions, could support effective oncology care and reduce the economic burden of GDP loss in terms of years of potential productive life lost (YPPLL) due to India's stupendous cancer burden. This review explores different aspects of cancer management, such as prevention, diagnosis, precision treatment, prognosis, and drug discovery, where AI has demonstrated promising clinical results. By harnessing the capabilities of AI in oncology research, healthcare professionals can enhance their ability to diagnose cancers at earlier stages, leading to more effective treatments and improved patient outcomes. With continued research and development, AI and digital health can play a transformative role in mitigating the challenges posed by the growing population and advancing the fight against cancer in India. Moreover, AI-driven technologies can assist in tailoring personalized treatment plans, optimizing therapeutic strategies, and supporting oncologists in making well-informed decisions. However, it is essential to ensure responsible implementation and address potential ethical and privacy concerns associated with using AI in healthcare.
Collapse
Affiliation(s)
- Isha Goel
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Yogendra Bhaskar
- ICMR Computational Genomics Centre, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Nand Kumar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
3
|
Ebrahim NAA, Soliman SMA. Advanced Biomaterials and Biomedical Devices for Studying Tumor-Associated Fibroblasts: Current Trends, Innovations, and Future Prospects. BIOMEDICAL MATERIALS & DEVICES 2025. [DOI: 10.1007/s44174-025-00287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 04/23/2025]
|
4
|
Akbari A, Adabi M, Masoodi M, Namazi A, Mansouri F, Tabaeian SP, Shokati Eshkiki Z. Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers. Front Artif Intell 2024; 7:1446693. [PMID: 39764458 PMCID: PMC11701808 DOI: 10.3389/frai.2024.1446693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/02/2024] [Indexed: 04/01/2025] Open
Abstract
One of the foremost causes of global healthcare burden is cancer of the gastrointestinal tract. The medical records, lab results, radiographs, endoscopic images, tissue samples, and medical histories of patients with gastrointestinal malignancies provide an enormous amount of medical data. There are encouraging signs that the advent of artificial intelligence could enhance the treatment of gastrointestinal issues with this data. Deep learning algorithms can swiftly and effectively analyze unstructured, high-dimensional data, including texts, images, and waveforms, while advanced machine learning approaches could reveal new insights into disease risk factors and phenotypes. In summary, artificial intelligence has the potential to revolutionize various features of gastrointestinal cancer care, such as early detection, diagnosis, therapy, and prognosis. This paper highlights some of the many potential applications of artificial intelligence in this domain. Additionally, we discuss the present state of the discipline and its potential future developments.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Adabi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Namazi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansouri
- Department of Microbiology, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Kothari S, Sharma S, Shejwal S, Kazi A, D'Silva M, Karthikeyan M. An explainable AI-assisted web application in cancer drug value prediction. MethodsX 2024; 12:102696. [PMID: 38633421 PMCID: PMC11022087 DOI: 10.1016/j.mex.2024.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
In recent years, there has been an increase in the interest in adopting Explainable Artificial Intelligence (XAI) for healthcare. The proposed system includes•An XAI model for cancer drug value prediction. The model provides data that is easy to understand and explain, which is critical for medical decision-making. It also produces accurate projections.•A model outperformed existing models due to extensive training and evaluation on a large cancer medication chemical compounds dataset.•Insights into the causation and correlation between the dependent and independent actors in the chemical composition of the cancer cell. While the model is evaluated on Lung Cancer data, the architecture offered in the proposed solution is cancer agnostic. It may be scaled out to other cancer cell data if the properties are similar. The work presents a viable route for customizing treatments and improving patient outcomes in oncology by combining XAI with a large dataset. This research attempts to create a framework where a user can upload a test case and receive forecasts with explanations, all in a portable PDF report.
Collapse
Affiliation(s)
- Sonali Kothari
- Symbiosis Institute of Technology – Pune Campus, Symbiosis International (Deemed University), Pune, India
| | - Shivanandana Sharma
- Symbiosis Institute of Technology – Pune Campus, Symbiosis International (Deemed University), Pune, India
| | - Sanskruti Shejwal
- Symbiosis Institute of Technology – Pune Campus, Symbiosis International (Deemed University), Pune, India
| | - Aqsa Kazi
- Symbiosis Institute of Technology – Pune Campus, Symbiosis International (Deemed University), Pune, India
| | - Michela D'Silva
- Symbiosis Institute of Technology – Pune Campus, Symbiosis International (Deemed University), Pune, India
| | - M. Karthikeyan
- Senior Principal Scientist, Chemical Engineering and Process Development, NCL-CSIR, Pune, India
| |
Collapse
|
6
|
Yadav A, Kumar A. Artificial intelligence in rectal cancer: What is the future? Artif Intell Cancer 2023; 4:11-22. [DOI: 10.35713/aic.v4.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 12/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in both men and women, and it is the second leading cause of cancer-related deaths globally. Around 60%-70% of CRC patients are diagnosed at advanced stages, with nearly 20% having liver metastases. It is noteworthy that the 5-year survival rates decline significantly from 80%-90% for localized disease to a mere 10%-15% for patients with metastasis at the time of diagnosis. Early diagnosis, appropriate therapeutic strategy, accurate assessment of treatment response, and prognostication is essential for better outcome. There has been significant technological development in the last couple of decades to improve the outcome of rectal cancer including Artificial intelligence (AI). AI is a broad term used to describe the study of machines that mimic human intelligence, such as perceiving the environment, drawing logical conclusions from observations, and performing complex tasks. At present AI has demonstrated a promising role in early diagnosis, prognosis, and treatment outcomes for patients with rectal cancer, a limited role in surgical decision making, and had a bright future.
Collapse
Affiliation(s)
- Alka Yadav
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India
| |
Collapse
|
7
|
Kerz E, Zanwar S, Qiao Y, Wiechmann D. Toward explainable AI (XAI) for mental health detection based on language behavior. Front Psychiatry 2023; 14:1219479. [PMID: 38144474 PMCID: PMC10748510 DOI: 10.3389/fpsyt.2023.1219479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/31/2023] [Indexed: 12/26/2023] Open
Abstract
Advances in artificial intelligence (AI) in general and Natural Language Processing (NLP) in particular are paving the new way forward for the automated detection and prediction of mental health disorders among the population. Recent research in this area has prioritized predictive accuracy over model interpretability by relying on deep learning methods. However, prioritizing predictive accuracy over model interpretability can result in a lack of transparency in the decision-making process, which is critical in sensitive applications such as healthcare. There is thus a growing need for explainable AI (XAI) approaches to psychiatric diagnosis and prediction. The main aim of this work is to address a gap by conducting a systematic investigation of XAI approaches in the realm of automatic detection of mental disorders from language behavior leveraging textual data from social media. In pursuit of this aim, we perform extensive experiments to evaluate the balance between accuracy and interpretability across predictive mental health models. More specifically, we build BiLSTM models trained on a comprehensive set of human-interpretable features, encompassing syntactic complexity, lexical sophistication, readability, cohesion, stylistics, as well as topics and sentiment/emotions derived from lexicon-based dictionaries to capture multiple dimensions of language production. We conduct extensive feature ablation experiments to determine the most informative feature groups associated with specific mental health conditions. We juxtapose the performance of these models against a "black-box" domain-specific pretrained transformer adapted for mental health applications. To enhance the interpretability of the transformers models, we utilize a multi-task fusion learning framework infusing information from two relevant domains (emotion and personality traits). Moreover, we employ two distinct explanation techniques: the local interpretable model-agnostic explanations (LIME) method and a model-specific self-explaining method (AGRAD). These methods allow us to discern the specific categories of words that the information-infused models rely on when generating predictions. Our proposed approaches are evaluated on two public English benchmark datasets, subsuming five mental health conditions (attention-deficit/hyperactivity disorder, anxiety, bipolar disorder, depression and psychological stress).
Collapse
Affiliation(s)
- Elma Kerz
- Department of English and American Studies, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Sourabh Zanwar
- Department of English and American Studies, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Yu Qiao
- Department of English and American Studies, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Daniel Wiechmann
- Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Braga L, Lopes R, Alves L, Mota F. The global patent landscape of artificial intelligence applications for cancer. Nat Biotechnol 2023; 41:1679-1687. [PMID: 38082076 DOI: 10.1038/s41587-023-02051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
- Luiza Braga
- Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Luiz Alves
- Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fabio Mota
- Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Weerarathna IN, Kamble AR, Luharia A. Artificial Intelligence Applications for Biomedical Cancer Research: A Review. Cureus 2023; 15:e48307. [PMID: 38058345 PMCID: PMC10697339 DOI: 10.7759/cureus.48307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
Artificial intelligence (AI) has rapidly evolved and demonstrated its potential in transforming biomedical cancer research, offering innovative solutions for cancer diagnosis, treatment, and overall patient care. Over the past two decades, AI has played a pivotal role in revolutionizing various facets of cancer clinical research. In this comprehensive review, we delve into the diverse applications of AI across the cancer care continuum, encompassing radiodiagnosis, radiotherapy, chemotherapy, immunotherapy, targeted therapy, surgery, and nanotechnology. AI has revolutionized cancer diagnosis, enabling early detection and precise characterization through advanced image analysis techniques. In radiodiagnosis, AI-driven algorithms enhance the accuracy of medical imaging, making it an invaluable tool for clinicians in the detection and assessment of cancer. AI has also revolutionized radiotherapy, facilitating precise tumor boundary delineation, optimizing treatment planning, and enabling real-time adjustments to improve therapeutic outcomes while minimizing collateral damage to healthy tissues. In chemotherapy, AI models have emerged as powerful tools for predicting patient responses to different treatment regimens, allowing for more personalized and effective strategies. In immunotherapy, AI analyzes genetic and imaging data to select ideal candidates for treatment and predict responses. Targeted therapy has seen great advancements with AI, aiding in the identification of specific molecular targets for tailored treatments. AI plays a vital role in surgery by offering real-time navigation and support, enhancing surgical precision. Moreover, the synergy between AI and nanotechnology promises the development of personalized nanomedicines, offering more efficient and targeted cancer treatments. While challenges related to data quality, interpretability, and ethical considerations persist, the future of AI in cancer research holds tremendous promise for improving patient outcomes through advanced and individualized care.
Collapse
Affiliation(s)
- Induni N Weerarathna
- Biomedical Sciences, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aahash R Kamble
- Artificial Intelligence and Data Science, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anurag Luharia
- Radiotherapy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Pham TD. Prediction of Five-Year Survival Rate for Rectal Cancer Using Markov Models of Convolutional Features of RhoB Expression on Tissue Microarray. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3195-3204. [PMID: 37155403 DOI: 10.1109/tcbb.2023.3274211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The ability to predict survival in cancer is clinically important because the finding can help patients and physicians make optimal treatment decisions. Artificial intelligence in the context of deep learning has been increasingly realized by the informatics-oriented medical community as a powerful machine-learning technology for cancer research, diagnosis, prediction, and treatment. This paper presents the combination of deep learning, data coding, and probabilistic modeling for predicting five-year survival in a cohort of patients with rectal cancer using images of RhoB expression on biopsies. Using about one-third of the patients' data for testing, the proposed approach achieved 90% prediction accuracy, which is much higher than the direct use of the best pretrained convolutional neural network (70%) and the best coupling of a pretrained model and support vector machines (70%).
Collapse
|
11
|
Farahinia A, Zhang W, Badea I. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115300. [PMID: 37300027 DOI: 10.3390/s23115300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The treatment of cancers is a significant challenge in the healthcare context today. Spreading circulating tumor cells (CTCs) throughout the body will eventually lead to cancer metastasis and produce new tumors near the healthy tissues. Therefore, separating these invading cells and extracting cues from them is extremely important for determining the rate of cancer progression inside the body and for the development of individualized treatments, especially at the beginning of the metastasis process. The continuous and fast separation of CTCs has recently been achieved using numerous separation techniques, some of which involve multiple high-level operational protocols. Although a simple blood test can detect the presence of CTCs in the blood circulation system, the detection is still restricted due to the scarcity and heterogeneity of CTCs. The development of more reliable and effective techniques is thus highly desired. The technology of microfluidic devices is promising among many other bio-chemical and bio-physical technologies. This paper reviews recent developments in the two types of microfluidic devices, which are based on the size and/or density of cells, for separating cancer cells. The goal of this review is to identify knowledge or technology gaps and to suggest future works.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
12
|
Khalaf K, Terrin M, Jovani M, Rizkala T, Spadaccini M, Pawlak KM, Colombo M, Andreozzi M, Fugazza A, Facciorusso A, Grizzi F, Hassan C, Repici A, Carrara S. A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound. J Clin Med 2023; 12:3757. [PMID: 37297953 PMCID: PMC10253269 DOI: 10.3390/jcm12113757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Endoscopic Ultrasound (EUS) is widely used for the diagnosis of bilio-pancreatic and gastrointestinal (GI) tract diseases, for the evaluation of subepithelial lesions, and for sampling of lymph nodes and solid masses located next to the GI tract. The role of Artificial Intelligence in healthcare in growing. This review aimed to provide an overview of the current state of AI in EUS from imaging to pathological diagnosis and training. METHODS AI algorithms can assist in lesion detection and characterization in EUS by analyzing EUS images and identifying suspicious areas that may require further clinical evaluation or biopsy sampling. Deep learning techniques, such as convolutional neural networks (CNNs), have shown great potential for tumor identification and subepithelial lesion (SEL) evaluation by extracting important features from EUS images and using them to classify or segment the images. RESULTS AI models with new features can increase the accuracy of diagnoses, provide faster diagnoses, identify subtle differences in disease presentation that may be missed by human eyes, and provide more information and insights into disease pathology. CONCLUSIONS The integration of AI in EUS images and biopsies has the potential to improve the diagnostic accuracy, leading to better patient outcomes and to a reduction in repeated procedures in case of non-diagnostic biopsies.
Collapse
Affiliation(s)
- Kareem Khalaf
- Division of Gastroenterology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S 1A1, Canada; (K.K.); (K.M.P.)
| | - Maria Terrin
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Manol Jovani
- Division of Gastroenterology, Maimonides Medical Center, SUNY Downstate University, Brooklyn, NY 11219, USA;
| | - Tommy Rizkala
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Marco Spadaccini
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Katarzyna M. Pawlak
- Division of Gastroenterology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S 1A1, Canada; (K.K.); (K.M.P.)
| | - Matteo Colombo
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Marta Andreozzi
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Alessandro Fugazza
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy;
| | - Cesare Hassan
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Alessandro Repici
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Silvia Carrara
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| |
Collapse
|
13
|
Casotti MC, Meira DD, Zetum ASS, de Araújo BC, da Silva DRC, dos Santos EDVW, Garcia FM, de Paula F, Santana GM, Louro LS, Alves LNR, Braga RFR, Trabach RSDR, Bernardes SS, Louro TES, Chiela ECF, Lenz G, de Carvalho EF, Louro ID. Computational Biology Helps Understand How Polyploid Giant Cancer Cells Drive Tumor Success. Genes (Basel) 2023; 14:801. [PMID: 37107559 PMCID: PMC10137723 DOI: 10.3390/genes14040801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Precision and organization govern the cell cycle, ensuring normal proliferation. However, some cells may undergo abnormal cell divisions (neosis) or variations of mitotic cycles (endopolyploidy). Consequently, the formation of polyploid giant cancer cells (PGCCs), critical for tumor survival, resistance, and immortalization, can occur. Newly formed cells end up accessing numerous multicellular and unicellular programs that enable metastasis, drug resistance, tumor recurrence, and self-renewal or diverse clone formation. An integrative literature review was carried out, searching articles in several sites, including: PUBMED, NCBI-PMC, and Google Academic, published in English, indexed in referenced databases and without a publication time filter, but prioritizing articles from the last 3 years, to answer the following questions: (i) "What is the current knowledge about polyploidy in tumors?"; (ii) "What are the applications of computational studies for the understanding of cancer polyploidy?"; and (iii) "How do PGCCs contribute to tumorigenesis?"
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Débora Dummer Meira
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Bruno Cancian de Araújo
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Danielle Ribeiro Campos da Silva
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | | | - Fernanda Mariano Garcia
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Flávia de Paula
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Lyvia Neves Rebello Alves
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Raquel Furlani Rocon Braga
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Raquel Silva dos Reis Trabach
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Sara Santos Bernardes
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória 29027-502, Brazil
| | - Eduardo Cremonese Filippi Chiela
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
- Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Guido Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| |
Collapse
|
14
|
The Systematic Review of Artificial Intelligence Applications in Breast Cancer Diagnosis. Diagnostics (Basel) 2022; 13:diagnostics13010045. [PMID: 36611337 PMCID: PMC9818874 DOI: 10.3390/diagnostics13010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Several studies have demonstrated the value of artificial intelligence (AI) applications in breast cancer diagnosis. The systematic review of AI applications in breast cancer diagnosis includes several studies that compare breast cancer diagnosis and AI. However, they lack systematization, and each study appears to be conducted uniquely. The purpose and contributions of this study are to offer elaborative knowledge on the applications of AI in the diagnosis of breast cancer through citation analysis in order to categorize the main area of specialization that attracts the attention of the academic community, as well as thematic issue analysis to identify the species being researched in each category. In this study, a total number of 17,900 studies addressing breast cancer and AI published between 2012 and 2022 were obtained from these databases: IEEE, Embase: Excerpta Medica Database Guide-Ovid, PubMed, Springer, Web of Science, and Google Scholar. We applied inclusion and exclusion criteria to the search; 36 studies were identified. The vast majority of AI applications used classification models for the prediction of breast cancer. Howbeit, accuracy (99%) has the highest number of performance metrics, followed by specificity (98%) and area under the curve (0.95). Additionally, the Convolutional Neural Network (CNN) was the best model of choice in several studies. This study shows that the quantity and caliber of studies that use AI applications in breast cancer diagnosis will continue to rise annually. As a result, AI-based applications are viewed as a supplement to doctors' clinical reasoning, with the ultimate goal of providing quality healthcare that is both affordable and accessible to everyone worldwide.
Collapse
|
15
|
Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121991. [PMID: 36556356 PMCID: PMC9786074 DOI: 10.3390/life12121991] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The World Health Organization (WHO), in their 2022 report, identified cancer as one of the leading causes of death, accounting for about 16% of deaths worldwide. The Cancer-Moonshot community aims to reduce the cancer death rate by half in the next 25 years and wants to improve the lives of cancer-affected people. Cancer mortality can be reduced if detected early and treated appropriately. Cancers like breast cancer and cervical cancer have high cure probabilities when treated early in accordance with best practices. Integration of artificial intelligence (AI) into cancer research is currently addressing many of the challenges where medical experts fail to bring cancer to control and cure, and the outcomes are quite encouraging. AI offers many tools and platforms to facilitate more understanding and tackling of this life-threatening disease. AI-based systems can help pathologists in diagnosing cancer more accurately and consistently, reducing the case error rates. Predictive-AI models can estimate the likelihood for a person to get cancer by identifying the risk factors. Big data, together with AI, can enable medical experts to develop customized treatments for cancer patients. The side effects from this kind of customized therapy will be less severe in comparison with the generalized therapies. However, many of these AI tools will remain ineffective in fighting against cancer and saving the lives of millions of patients unless they are accessible and understandable to biologists, oncologists, and other medical cancer researchers. This paper presents the trends, challenges, and future directions of AI in cancer research. We hope that this paper will be of help to both medical experts and technical experts in getting a better understanding of the challenges and research opportunities in cancer diagnosis and treatment.
Collapse
|
16
|
DenSec: Secreted Protein Prediction in Cerebrospinal Fluid Based on DenseNet and Transformer. MATHEMATICS 2022. [DOI: 10.3390/math10142490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cerebrospinal fluid (CSF) exists in the surrounding spaces of mammalian central nervous systems (CNS); therefore, there are numerous potential protein biomarkers associated with CNS disease in CSF. Currently, approximately 4300 proteins have been identified in CSF by protein profiling. However, due to the diverse modifications, as well as the existing technical limits, large-scale protein identification in CSF is still considered a challenge. Inspired by computational methods, this paper proposes a deep learning framework, named DenSec, for secreted protein prediction in CSF. In the first phase of DenSec, all input proteins are encoded as a matrix with a fixed size of 1000 × 20 by calculating a position-specific score matrix (PSSM) of protein sequences. In the second phase, a dense convolutional network (DenseNet) is adopted to extract the feature from these PSSMs automatically. After that, Transformer with a fully connected dense layer acts as classifier to perform a binary classification in terms of secretion into CSF or not. According to the experiment results, DenSec achieves a mean accuracy of 86.00% in the test dataset and outperforms the state-of-the-art methods.
Collapse
|