1
|
Liu Z, Qiu WR, Liu Y, Yan H, Pei W, Zhu YH, Qiu J. A comprehensive review of computational methods for Protein-DNA binding site prediction. Anal Biochem 2025; 703:115862. [PMID: 40209920 DOI: 10.1016/j.ab.2025.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Accurately identifying protein-DNA binding sites is essential for understanding the molecular mechanisms underlying biological processes, which in turn facilitates advancements in drug discovery and design. While biochemical experiments provide the most accurate way to locate DNA-binding sites, they are generally time-consuming, resource-intensive, and expensive. There is a pressing need to develop computational methods that are both efficient and accurate for DNA-binding site prediction. This study thoroughly reviews and categorizes major computational approaches for predicting DNA-binding sites, including template detection, statistical machine learning, and deep learning-based methods. The 14 state-of-the-art DNA-binding site prediction models have been benchmarked on 136 non-redundant proteins, where the deep learning-based, especially pre-trained large language model-based, methods achieve superior performance over the other two categories. Applications of these DNA-binding site prediction methods are also involved.
Collapse
Affiliation(s)
- Zi Liu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Wang-Ren Qiu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yan Liu
- Department of Computer Science, Yangzhou University, 196 Huayang West Road, Yangzhou, 225100, China
| | - He Yan
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, 159 Longpanlu Road, Nanjing, 210037, China
| | - Wenyi Pei
- Geriatric Department, Shanghai Baoshan District Wusong Central Hospital, 101 Tongtai North Road, Shanghai, 200940, China.
| | - Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
| | - Jing Qiu
- Information Department, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Zhu L, Yi W, Zhang L, Qiu C, Sun N, He J, Feng P, Wu Q, Wang G, Wu G. hnRNPH1: A Multifaceted Regulator in RNA Processing and Disease Pathogenesis. Int J Mol Sci 2025; 26:5159. [PMID: 40507967 PMCID: PMC12155273 DOI: 10.3390/ijms26115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/26/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025] Open
Abstract
Heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) is a multifunctional RNA-binding protein (RBP) that plays a central role in post-transcriptional regulation. Through its quasi-RNA recognition motifs and low-complexity domains, hnRNPH1 specifically binds guanine-rich RNA sequences, including G-quadruplex structures, to precisely modulate multiple aspects of RNA metabolism, such as alternative splicing, mRNA stability, translation, and subcellular localization. Accumulating evidence has implicated hnRNPH1 dysfunction in the pathogenesis of several human diseases. In cancer, hnRNPH1 often acts as a pro-tumorigenic factor, albeit in a context-dependent manner, influencing the alternative splicing of crucial oncogenes, mRNA stability, and tumor cell sensitivity to therapeutic agents. In the nervous system, hnRNPH1 is involved in neurodevelopment, neurodegenerative diseases, and drug addiction and plays an essential role in maintaining neuronal function and homeostasis. Furthermore, it exerts regulatory functions in reproductive system development and fertility and in non-neoplastic pathologies, including cardiovascular diseases, autoimmune disorders, and viral hepatitis. Given its pathophysiological significance, hnRNPH1 has emerged as a promising biomarker and therapeutic target. This review provides an overview of the structural basis and core molecular function of hnRNPH1. Its mechanisms of action and pathological significance in various diseases have also been detailed. Additionally, this review summarizes the current therapeutic strategies targeting hnRNPH1, discusses the associated challenges, outlines optimization approaches, and considers future research directions. Overall, this review aims to deepen our understanding of hnRNPH1 biology and inspire the development of novel diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangyi Wang
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China; (L.Z.); (W.Y.); (L.Z.); (C.Q.); (N.S.); (J.H.); (P.F.); (Q.W.)
| | - Guosheng Wu
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China; (L.Z.); (W.Y.); (L.Z.); (C.Q.); (N.S.); (J.H.); (P.F.); (Q.W.)
| |
Collapse
|
3
|
Mou M, Zhang Z, Pan Z, Zhu F. Deep Learning for Predicting Biomolecular Binding Sites of Proteins. RESEARCH (WASHINGTON, D.C.) 2025; 8:0615. [PMID: 39995900 PMCID: PMC11848751 DOI: 10.34133/research.0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
The rapid evolution of deep learning has markedly enhanced protein-biomolecule binding site prediction, offering insights essential for drug discovery, mutation analysis, and molecular biology. Advancements in both sequence-based and structure-based methods demonstrate their distinct strengths and limitations. Sequence-based approaches offer efficiency and adaptability, while structure-based techniques provide spatial precision but require high-quality structural data. Emerging trends in hybrid models that combine multimodal data, such as integrating sequence and structural information, along with innovations in geometric deep learning, present promising directions for improving prediction accuracy. This perspective summarizes challenges such as computational demands and dynamic modeling and proposes strategies for future research. The ultimate goal is the development of computationally efficient and flexible models capable of capturing the complexity of real-world biomolecular interactions, thereby broadening the scope and applicability of binding site predictions across a wide range of biomedical contexts.
Collapse
Affiliation(s)
| | | | | | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Basu S, Yu J, Kihara D, Kurgan L. Twenty years of advances in prediction of nucleic acid-binding residues in protein sequences. Brief Bioinform 2024; 26:bbaf016. [PMID: 39833102 PMCID: PMC11745544 DOI: 10.1093/bib/bbaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Computational prediction of nucleic acid-binding residues in protein sequences is an active field of research, with over 80 methods that were released in the past 2 decades. We identify and discuss 87 sequence-based predictors that include dozens of recently published methods that are surveyed for the first time. We overview historical progress and examine multiple practical issues that include availability and impact of predictors, key features of their predictive models, and important aspects related to their training and assessment. We observe that the past decade has brought increased use of deep neural networks and protein language models, which contributed to substantial gains in the predictive performance. We also highlight advancements in vital and challenging issues that include cross-predictions between deoxyribonucleic acid (DNA)-binding and ribonucleic acid (RNA)-binding residues and targeting the two distinct sources of binding annotations, structure-based versus intrinsic disorder-based. The methods trained on the structure-annotated interactions tend to perform poorly on the disorder-annotated binding and vice versa, with only a few methods that target and perform well across both annotation types. The cross-predictions are a significant problem, with some predictors of DNA-binding or RNA-binding residues indiscriminately predicting interactions with both nucleic acid types. Moreover, we show that methods with web servers are cited substantially more than tools without implementation or with no longer working implementations, motivating the development and long-term maintenance of the web servers. We close by discussing future research directions that aim to drive further progress in this area.
Collapse
Affiliation(s)
- Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| | - Jing Yu
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, 915 Mitch Daniels Boulevard, West Lafayette, IN 47907, United States
- Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| |
Collapse
|
5
|
Zhang L, Liu T. PDNAPred: Interpretable prediction of protein-DNA binding sites based on pre-trained protein language models. Int J Biol Macromol 2024; 281:136147. [PMID: 39357703 DOI: 10.1016/j.ijbiomac.2024.136147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Protein-DNA interactions play critical roles in various biological processes and are essential for drug discovery. However, traditional experimental methods are labor-intensive and unable to keep pace with the increasing volume of protein sequences, leading to a substantial number of proteins lacking DNA-binding annotations. Therefore, developing an efficient computational method to identify protein-DNA binding sites is crucial. Unfortunately, most existing computational methods rely on manually selected features or protein structure information, making these methods inapplicable to large-scale prediction tasks. In this study, we introduced PDNAPred, a sequence-based method that combines two pre-trained protein language models with a designed CNN-GRU network to identify DNA-binding sites. Additionally, to tackle the issue of imbalanced dataset samples, we employed focal loss. Our comprehensive experiments demonstrated that PDNAPred significantly improved the accuracy of DNA-binding site prediction, outperforming existing state-of-the-art sequence-based methods. Remarkably, PDNAPred also achieved results comparable to advanced structure-based methods. The designed CNN-GRU network enhances its capability to detect DNA-binding sites accurately. Furthermore, we validated the versatility of PDNAPred by training it on RNA-binding site datasets, showing its potential as a general framework for amino acid binding site prediction. Finally, we conducted model interpretability analysis to elucidate the reasons behind PDNAPred's outstanding performance.
Collapse
Affiliation(s)
- Lingrong Zhang
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Zeng W, Dou Y, Pan L, Xu L, Peng S. Improving prediction performance of general protein language model by domain-adaptive pretraining on DNA-binding protein. Nat Commun 2024; 15:7838. [PMID: 39244557 PMCID: PMC11380688 DOI: 10.1038/s41467-024-52293-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
DNA-protein interactions exert the fundamental structure of many pivotal biological processes, such as DNA replication, transcription, and gene regulation. However, accurate and efficient computational methods for identifying these interactions are still lacking. In this study, we propose a method ESM-DBP through refining the DNA-binding protein sequence repertory and domain-adaptive pretraining based the general protein language model. Our method considers the lacking exploration of general language model for DNA-binding protein domain-specific knowledge, so we screen out 170,264 DNA-binding protein sequences to construct the domain-adaptive language model. Experimental results on four downstream tasks show that ESM-DBP provides a better feature representation of DNA-binding protein compared to the original language model, resulting in improved prediction performance and outperforming the state-of-the-art methods. Moreover, ESM-DBP can still perform well even for those sequences with only a few homologous sequences. ChIP-seq on two predicted cases further support the validity of the proposed method.
Collapse
Affiliation(s)
- Wenwu Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Yutao Dou
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Liangrui Pan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Liwen Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
7
|
Zhang B, Hou Z, Yang Y, Wong KC, Zhu H, Li X. SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues. Commun Biol 2024; 7:679. [PMID: 38830995 PMCID: PMC11148103 DOI: 10.1038/s42003-024-06332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Proteins and nucleic-acids are essential components of living organisms that interact in critical cellular processes. Accurate prediction of nucleic acid-binding residues in proteins can contribute to a better understanding of protein function. However, the discrepancy between protein sequence information and obtained structural and functional data renders most current computational models ineffective. Therefore, it is vital to design computational models based on protein sequence information to identify nucleic acid binding sites in proteins. Here, we implement an ensemble deep learning model-based nucleic-acid-binding residues on proteins identification method, called SOFB, which characterizes protein sequences by learning the semantics of biological dynamics contexts, and then develop an ensemble deep learning-based sequence network to learn feature representation and classification by explicitly modeling dynamic semantic information. Among them, the language learning model, which is constructed from natural language to biological language, captures the underlying relationships of protein sequences, and the ensemble deep learning-based sequence network consisting of different convolutional layers together with Bi-LSTM refines various features for optimal performance. Meanwhile, to address the imbalanced issue, we adopt ensemble learning to train multiple models and then incorporate them. Our experimental results on several DNA/RNA nucleic-acid-binding residue datasets demonstrate that our proposed model outperforms other state-of-the-art methods. In addition, we conduct an interpretability analysis of the identified nucleic acid binding residue sequences based on the attention weights of the language learning model, revealing novel insights into the dynamic semantic information that supports the identified nucleic acid binding residues. SOFB is available at https://github.com/Encryptional/SOFB and https://figshare.com/articles/online_resource/SOFB_figshare_rar/25499452 .
Collapse
Affiliation(s)
- Bin Zhang
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Zilong Hou
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Yuning Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Haoran Zhu
- School of Artificial Intelligence, Jilin University, Changchun, China.
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
9
|
Zhang J, Wang R, Wei L. MucLiPred: Multi-Level Contrastive Learning for Predicting Nucleic Acid Binding Residues of Proteins. J Chem Inf Model 2024; 64:1050-1065. [PMID: 38301174 DOI: 10.1021/acs.jcim.3c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Protein-molecule interactions play a crucial role in various biological functions, with their accurate prediction being pivotal for drug discovery and design processes. Traditional methods for predicting protein-molecule interactions are limited. Some can only predict interactions with a specific molecule, restricting their applicability, while others target multiple molecule types but fail to efficiently process diverse interaction information, leading to complexity and inefficiency. This study presents a novel deep learning model, MucLiPred, equipped with a dual contrastive learning mechanism aimed at improving the prediction of multiple molecule-protein interactions and the identification of potential molecule-binding residues. The residue-level paradigm focuses on differentiating binding from non-binding residues, illuminating detailed local interactions. The type-level paradigm, meanwhile, analyzes overarching contexts of molecule types, like DNA or RNA, ensuring that representations of identical molecule types gravitate closer in the representational space, bolstering the model's proficiency in discerning interaction motifs. This dual approach enables comprehensive multi-molecule predictions, elucidating the relationships among different molecule types and strengthening precise protein-molecule interaction predictions. Empirical evidence demonstrates MucLiPred's superiority over existing models in robustness and prediction accuracy. The integration of dual contrastive learning techniques amplifies its capability to detect potential molecule-binding residues with precision. Further optimization, separating representational and classification tasks, has markedly improved its performance. MucLiPred thus represents a significant advancement in protein-molecule interaction prediction, setting a new precedent for future research in this field.
Collapse
Affiliation(s)
- Jiashuo Zhang
- School of Software, Shandong University, Jinan 250101, China
| | - Ruheng Wang
- School of Software, Shandong University, Jinan 250101, China
| | - Leyi Wei
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
- Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| |
Collapse
|
10
|
Zhu YH, Liu Z, Liu Y, Ji Z, Yu DJ. ULDNA: integrating unsupervised multi-source language models with LSTM-attention network for high-accuracy protein-DNA binding site prediction. Brief Bioinform 2024; 25:bbae040. [PMID: 38349057 PMCID: PMC10939370 DOI: 10.1093/bib/bbae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Efficient and accurate recognition of protein-DNA interactions is vital for understanding the molecular mechanisms of related biological processes and further guiding drug discovery. Although the current experimental protocols are the most precise way to determine protein-DNA binding sites, they tend to be labor-intensive and time-consuming. There is an immediate need to design efficient computational approaches for predicting DNA-binding sites. Here, we proposed ULDNA, a new deep-learning model, to deduce DNA-binding sites from protein sequences. This model leverages an LSTM-attention architecture, embedded with three unsupervised language models that are pre-trained on large-scale sequences from multiple database sources. To prove its effectiveness, ULDNA was tested on 229 protein chains with experimental annotation of DNA-binding sites. Results from computational experiments revealed that ULDNA significantly improves the accuracy of DNA-binding site prediction in comparison with 17 state-of-the-art methods. In-depth data analyses showed that the major strength of ULDNA stems from employing three transformer language models. Specifically, these language models capture complementary feature embeddings with evolution diversity, in which the complex DNA-binding patterns are buried. Meanwhile, the specially crafted LSTM-attention network effectively decodes evolution diversity-based embeddings as DNA-binding results at the residue level. Our findings demonstrated a new pipeline for predicting DNA-binding sites on a large scale with high accuracy from protein sequence alone.
Collapse
Affiliation(s)
- Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Liu
- School of Information Engineering, Yangzhou University, Yangzhou 225000, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
11
|
Liu Y, Tian B. Protein-DNA binding sites prediction based on pre-trained protein language model and contrastive learning. Brief Bioinform 2023; 25:bbad488. [PMID: 38171929 PMCID: PMC10782905 DOI: 10.1093/bib/bbad488] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Protein-DNA interaction is critical for life activities such as replication, transcription and splicing. Identifying protein-DNA binding residues is essential for modeling their interaction and downstream studies. However, developing accurate and efficient computational methods for this task remains challenging. Improvements in this area have the potential to drive novel applications in biotechnology and drug design. In this study, we propose a novel approach called Contrastive Learning And Pre-trained Encoder (CLAPE), which combines a pre-trained protein language model and the contrastive learning method to predict DNA binding residues. We trained the CLAPE-DB model on the protein-DNA binding sites dataset and evaluated the model performance and generalization ability through various experiments. The results showed that the area under ROC curve values of the CLAPE-DB model on the two benchmark datasets reached 0.871 and 0.881, respectively, indicating superior performance compared to other existing models. CLAPE-DB showed better generalization ability and was specific to DNA-binding sites. In addition, we trained CLAPE on different protein-ligand binding sites datasets, demonstrating that CLAPE is a general framework for binding sites prediction. To facilitate the scientific community, the benchmark datasets and codes are freely available at https://github.com/YAndrewL/clape.
Collapse
Affiliation(s)
- Yufan Liu
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Boxue Tian
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Patiyal S, Dhall A, Bajaj K, Sahu H, Raghava GPS. Prediction of RNA-interacting residues in a protein using CNN and evolutionary profile. Brief Bioinform 2023; 24:6901899. [PMID: 36516298 DOI: 10.1093/bib/bbac538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
This paper describes a method Pprint2, which is an improved version of Pprint developed for predicting RNA-interacting residues in a protein. Training and independent/validation datasets used in this study comprises of 545 and 161 non-redundant RNA-binding proteins, respectively. All models were trained on training dataset and evaluated on the validation dataset. The preliminary analysis reveals that positively charged amino acids such as H, R and K, are more prominent in the RNA-interacting residues. Initially, machine learning based models have been developed using binary profile and obtain maximum area under curve (AUC) 0.68 on validation dataset. The performance of this model improved significantly from AUC 0.68 to 0.76, when evolutionary profile is used instead of binary profile. The performance of our evolutionary profile-based model improved further from AUC 0.76 to 0.82, when convolutional neural network has been used for developing model. Our final model based on convolutional neural network using evolutionary information achieved AUC 0.82 with Matthews correlation coefficient of 0.49 on the validation dataset. Our best model outperforms existing methods when evaluated on the independent/validation dataset. A user-friendly standalone software and web-based server named 'Pprint2' has been developed for predicting RNA-interacting residues (https://webs.iiitd.edu.in/raghava/pprint2 and https://github.com/raghavagps/pprint2).
Collapse
Affiliation(s)
- Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Khushboo Bajaj
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Harshita Sahu
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| |
Collapse
|
13
|
Qiu XY, Wu H, Shao J. TALE-cmap: Protein function prediction based on a TALE-based architecture and the structure information from contact map. Comput Biol Med 2022; 149:105938. [DOI: 10.1016/j.compbiomed.2022.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
|