1
|
Zhang T, Gao S, Zhang SW, Cui XD. m 6Aexpress-enet: Predicting the regulatory expression m 6A sites by an enet-regularization negative binomial regression model. Methods 2024; 226:61-70. [PMID: 38631404 DOI: 10.1016/j.ymeth.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
As the most abundant mRNA modification, m6A controls and influences many aspects of mRNA metabolism including the mRNA stability and degradation. However, the role of specific m6A sites in regulating gene expression still remains unclear. In additional, the multicollinearity problem caused by the correlation of methylation level of multiple m6A sites in each gene could influence the prediction performance. To address the above challenges, we propose an elastic-net regularized negative binomial regression model (called m6Aexpress-enet) to predict which m6A site could potentially regulate its gene expression. Comprehensive evaluations on simulated datasets demonstrate that m6Aexpress-enet could achieve the top prediction performance. Applying m6Aexpress-enet on real MeRIP-seq data from human lymphoblastoid cell lines, we have uncovered the complex regulatory pattern of predicted m6A sites and their unique enrichment pathway of the constructed co-methylation modules. m6Aexpress-enet proves itself as a powerful tool to enable biologists to discover the mechanism of m6A regulatory gene expression. Furthermore, the source code and the step-by-step implementation of m6Aexpress-enet is freely accessed at https://github.com/tengzhangs/m6Aexpress-enet.
Collapse
Affiliation(s)
- Teng Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710027 Shaanxi, China; School of Computer, Jiangsu University of Science and Technology, ZhenJiang, 212100 JiangSu, China
| | - Shang Gao
- School of Computer, Jiangsu University of Science and Technology, ZhenJiang, 212100 JiangSu, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710027 Shaanxi, China.
| | - Xiao-Dong Cui
- School of Marine Science and Technology Northwestern Polytechnical University, Xi'an, 710027 Shaanxi, China.
| |
Collapse
|
2
|
Liu L, Liang L, Li H, Shao W, Yang C, Lin F, Liu J, Zhang J. The role of m6A-mediated PD-1/PD-L1 in antitumor immunity. Biochem Pharmacol 2023; 210:115460. [PMID: 36822438 DOI: 10.1016/j.bcp.2023.115460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent, abundant and conserved type of internal posttranscriptional RNA modification in eukaryotic cells. Emerging evidence suggests that m6A modifications perform important functions that affect antitumor immunity. Programmed death 1 (PD-1) and programmed cell death-ligand 1 (PD-L1) are the two most well-studied immune checkpoint pathways. The interaction of PD-L1 with its receptor PD-1 inhibits cytotoxic T-cell-mediated tumor responses, and blockade of this interaction has proven to be an effective immunotherapy strategy in various cancers. Unfortunately, few cancer patients benefit from the two tools due to uncertain resistance. m6A plays an important role in affecting RNA biogenesis and process in various cancers. Understanding the molecular mechanism of drug resistance will promote the development of personalized clinical management. In this review, we systematically discussed the mechanisms by which m6A regulates PD-1 and PD-L1 expression and further their functions in the process of tumor immunotherapy and the potential application prospects of m6A-associated molecules. Moreover, mounting m6Ascore is established to evaluate the prognosis of cancer.
Collapse
Affiliation(s)
- Li Liu
- The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Long Liang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078 Hunan, China
| | - Hui Li
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078 Hunan, China; Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Shao
- The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Chaoying Yang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078 Hunan, China
| | - Feng Lin
- Department of Urology Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033 Guangdong, China.
| | - Jing Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Ji Zhang
- The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China; The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, 421002 Hunan, China.
| |
Collapse
|