1
|
Dong J, Mao Z, Li H, Wang R, Wang Y, Jia H, Li J, Liu Q, Zhang C, Liao X, Liu D, Ma H, Tian C. MTD: A cloud-based omics database and interactive platform for Myceliophthora thermophila. Synth Syst Biotechnol 2025; 10:783-793. [PMID: 40276250 PMCID: PMC12018684 DOI: 10.1016/j.synbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Nowadays, biological databases are playing an increasingly critical role in biological research. Myceliophthora thermophila is an excellent thermophilic fungal chassis for industrial enzyme production and plant biomass-based chemical synthesis. The lack of a dedicated public database has made access to and reanalysis of M. thermophila data difficult. To bridge this gap, we developed MTD (https://mtd.biodesign.ac.cn/), a cloud-based omics database and interactive platform for M. thermophila. MTD integrates comprehensive genome annotations, sequence-based predictions, transcriptome data, curated experimental descriptions, and bioinformatics analysis tools, offering a comprehensive, one-stop solution with a 'top-down' search strategy to streamline M. thermophila research. The platform supports data reproduction, rapid querying, and in-depth mining of existing transcriptome datasets. Based on analyses using data and tools in MTD, we identified shifts in metabolic allocation in a glucoamylase hyperproduction strain of M. thermophila, highlighting changes in fatty acid biosynthesis and amino acids biosynthesis pathways, which provide new insights into the underlying phenotypic alterations. As a pioneering resource, MTD marks a key advancement in M. thermophila research and sets the model for developing similar databases for other species.
Collapse
Affiliation(s)
- Jiacheng Dong
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhitao Mao
- Biodesign Center, State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Haoran Li
- Biodesign Center, State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Ruoyu Wang
- Biodesign Center, State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yutao Wang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Haokai Jia
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingen Li
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qian Liu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Chenglin Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoping Liao
- Biodesign Center, State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Defei Liu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- Biodesign Center, State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Chaoguang Tian
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
2
|
Tabar MS, Parsania C, Giardina C, Feng Y, Wong ACH, Metierre C, Nagarajah R, Dhungel BP, Rasko JEJ, Bailey CG. Intrinsically Disordered Regions Define Unique Protein Interaction Networks in CHD Family Remodelers. FASEB J 2025; 39:e70632. [PMID: 40372282 PMCID: PMC12080455 DOI: 10.1096/fj.202402808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Chromodomain helicase DNA-binding (CHD) enzymes play a pivotal role in genome regulation. They possess highly conserved ATPase domains flanked by poorly characterized and intrinsically disordered N- and C-termini. Using mass spectrometry, we identify dozens of novel protein-protein interactions (PPIs) within the N- and C-termini of human CHD family members. We also define a highly conserved aggregation-prone region (APR) within the C-terminus of CHD4 which is critical for its interaction with the nucleosome remodeling and deacetylase (NuRD), as well as ChAHP (CHD4, activity-dependent neuroprotective protein (ADNP), and HP1γ) complexes. Further analysis reveals a regulatory role for the CHD4 APR in gene transcription during erythrocyte formation. Our results highlight that the N- and C-termini of CHD chromatin remodelers shape protein interaction networks that drive unique transcriptional programs.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Chirag Parsania
- Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Caroline Giardina
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Yue Feng
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Alex C. H. Wong
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Cynthia Metierre
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Rajini Nagarajah
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Bijay P. Dhungel
- Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - John E. J. Rasko
- Cell & Molecular TherapiesRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
| | - Charles G. Bailey
- Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- School of Medical Sciences, Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
3
|
Mack BM, Lebar MD. AFED, a comprehensive resource for Aspergillus flavus gene expression profiling. Database (Oxford) 2025; 2025:baaf033. [PMID: 40250417 PMCID: PMC12007493 DOI: 10.1093/database/baaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025]
Abstract
The Aspergillus flavus expression database (AFED) is a comprehensive resource dedicated to exploring gene expression in A. flavus, a significant fungal pathogen that threatens food security by contaminating crops with aflatoxin. Given the complex regulation of aflatoxin biosynthesis and the lack of centralized expression data resources for this important pathogen, a database integrating diverse experimental conditions is essential for understanding its biology and developing control strategies. Public RNA sequencing data were used to quantify gene expression abundance for 604 A. flavus samples from 52 experiments. Using abundance data, we created an AFED accessible through a web-based interface that allows for the expression profiles of genes to be conveniently examined across different growth conditions and life cycle stages. Expression profiles can be visualized through either an interactive bar plot for single gene queries or a heatmap for multiple gene queries. A gene co-expression network based on samples containing at least 10 million mapped reads is also available, which allows users to identify genes that are co-expressed with an individual gene or set of genes and displays the functional enrichment among the co-expressed genes. Database URL: https://a-flavus-expression-db-jyqnpeuvta-uc.a.run.app.
Collapse
Affiliation(s)
- Brian M Mack
- Food and Feed Safety Research, Southern Regional Research Center, Agriculture Research Service, United States Department of Agriculture (USDA), 1100 Allen Toussaint Blvd, New Orleans, LA 70124, United States
| | - Matthew D Lebar
- Food and Feed Safety Research, Southern Regional Research Center, Agriculture Research Service, United States Department of Agriculture (USDA), 1100 Allen Toussaint Blvd, New Orleans, LA 70124, United States
| |
Collapse
|
4
|
Desmarini D, Truong D, Sethiya P, Liu G, Bowring B, Jessen H, Dinh H, Cain AK, Thompson PE, Djordjevic JT. Synthesis of a New Purine Analogue Class with Antifungal Activity and Improved Potency against Fungal IP 3-4K. ACS Infect Dis 2025; 11:940-953. [PMID: 40164150 PMCID: PMC11997995 DOI: 10.1021/acsinfecdis.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
New antifungals are urgently needed to treat deadly fungal infections. Targeting the fungal inositol polyphosphate kinases IP3-4K (Arg1) and IP6K (Kcs1) is a promising strategy as it has been validated genetically to be crucial for fungal virulence but never pharmacologically. We now report the synthesis of DT-23, an analogue of N2-(m-trifluorobenzylamino)-N6-(p-nitrobenzylamino)purine (TNP), and demonstrate that it more potently inhibits recombinant Arg1 from the priority pathogen Cryptococcus neoformans (Cn) (IC50 = 0.6 μM) than previous analogues (IC50 = 10-30 μM). DT-23 also inhibits recombinant Kcs1 with similar potency (IC50 = 0.68 μM) and Arg1 and Kcs1 activity in vivo. Unlike previous analogues, DT-23 inhibits fungal growth (MIC50 = 15 μg/mL) and only 1.5 μg/mL synergizes with Amphotericin B to kill Cn in vitro. DT-23/Amphotericin B is also more protective against Cn infection in an insect model compared to each drug alone. Transcription profiling shows that DT-23 impacts early stages in IP synthesis and cellular functions impacted by IPK gene deletion, consistent with its targeted effect. This study establishes the first pharmacological link between inhibiting IPK activity and antifungal activity, providing tools for studying IPK function and a foundation to potentially develop a new class of antifungal drug.
Collapse
Affiliation(s)
- Desmarini Desmarini
- Centre
for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney
Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel Truong
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Pooja Sethiya
- Centre
for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney
Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Guizhen Liu
- Institute
of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg i.B, Germany
- CIBSS-Centre
for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Bethany Bowring
- Centre
for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney
Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Henning Jessen
- Institute
of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg i.B, Germany
- CIBSS-Centre
for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Hue Dinh
- ARC
Centre
of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW 2019, Australia
| | - Amy K. Cain
- ARC
Centre
of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW 2019, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Julianne T. Djordjevic
- Centre
for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney
Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Westmead
Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Rai MN, Lan Q, Parsania C, Rai R, Shirgaonkar N, Chen R, Shen L, Tan K, Wong KH. Temporal transcriptional response of Candida glabrata during macrophage infection reveals a multifaceted transcriptional regulator CgXbp1 important for macrophage response and fluconazole resistance. eLife 2024; 13:e73832. [PMID: 39356739 PMCID: PMC11554308 DOI: 10.7554/elife.73832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/01/2024] [Indexed: 10/04/2024] Open
Abstract
Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata's survival in macrophages and drug tolerance.
Collapse
Affiliation(s)
| | - Qing Lan
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Rikky Rai
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Ruiwen Chen
- Faculty of Health Sciences, University of MacauTaipaChina
| | - Li Shen
- Faculty of Health Sciences, University of MacauTaipaChina
- Gene Expression, Genomics and Bioinformatics Core, Faculty of Health Sciences, University of MacauTaipaChina
| | - Kaeling Tan
- Faculty of Health Sciences, University of MacauTaipaChina
- Gene Expression, Genomics and Bioinformatics Core, Faculty of Health Sciences, University of MacauTaipaChina
| | - Koon Ho Wong
- Faculty of Health Sciences, University of MacauTaipaChina
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau,Avenida da UniversidadeTaipaChina
- MoE Frontiers Science Center for Precision Oncology, University of MacauTaipaChina
| |
Collapse
|
6
|
Vural-Ozdeniz M, Calisir K, Acar R, Yavuz A, Ozgur MM, Dalgıc E, Konu O. CAP-RNAseq: an integrated pipeline for functional annotation and prioritization of co-expression clusters. Brief Bioinform 2024; 25:bbad536. [PMID: 38279653 PMCID: PMC10818169 DOI: 10.1093/bib/bbad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/21/2024] [Indexed: 01/28/2024] Open
Abstract
Cluster analysis is one of the most widely used exploratory methods for visualization and grouping of gene expression patterns across multiple samples or treatment groups. Although several existing online tools can annotate clusters with functional terms, there is no all-in-one webserver to effectively prioritize genes/clusters using gene essentiality as well as congruency of mRNA-protein expression. Hence, we developed CAP-RNAseq that makes possible (1) upload and clustering of bulk RNA-seq data followed by identification, annotation and network visualization of all or selected clusters; and (2) prioritization using DepMap gene essentiality and/or dependency scores as well as the degree of correlation between mRNA and protein levels of genes within an expression cluster. In addition, CAP-RNAseq has an integrated primer design tool for the prioritized genes. Herein, we showed using comparisons with the existing tools and multiple case studies that CAP-RNAseq can uniquely aid in the discovery of co-expression clusters enriched with essential genes and prioritization of novel biomarker genes that exhibit high correlations between their mRNA and protein expression levels. CAP-RNAseq is applicable to RNA-seq data from different contexts including cancer and available at http://konulabapps.bilkent.edu.tr:3838/CAPRNAseq/ and the docker image is downloadable from https://hub.docker.com/r/konulab/caprnaseq.
Collapse
Affiliation(s)
| | - Kubra Calisir
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Rana Acar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Aysenur Yavuz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Mustafa M Ozgur
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Ertugrul Dalgıc
- Department of Medical Biology, School of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye
| | - Ozlen Konu
- Department of Neuroscience, Bilkent University, Ankara, Türkiye
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| |
Collapse
|
7
|
Sinha S, Li J, Tam B, Wang SM. Classification of PTEN missense VUS through exascale simulations. Brief Bioinform 2023; 24:bbad361. [PMID: 37843401 DOI: 10.1093/bib/bbad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN), a tumor suppressor with dual phosphatase properties, is a key factor in PI3K/AKT signaling pathway. Pathogenic germline variation in PTEN can abrogate its ability to dephosphorylate, causing high cancer risk. Lack of functional evidence lets numerous PTEN variants be classified as variants of uncertain significance (VUS). Utilizing Molecular Dynamics (MD) simulations, we performed a thorough evaluation for 147 PTEN missense VUS, sorting them into 66 deleterious and 81 tolerated variants. Utilizing replica exchange molecular dynamic (REMD) simulations, we further assessed the variants situated in the catalytic core of PTEN's phosphatase domain and uncovered conformational alterations influencing the structural stability of the phosphatase domain. There was a high degree of agreement between our results and the variants classified by Variant Abundance by Massively Parallel Sequencing, saturation mutagenesis, multiplexed functional data and experimental assays. Our extensive analysis of PTEN missense VUS should benefit their clinical applications in PTEN-related cancer. SIGNIFICANCE STATEMENT Classification of PTEN variants affecting its lipid phosphatase activity is important for understanding the roles of PTEN variation in the pathogenesis of hereditary and sporadic malignancies. Of the 3000 variants identified in PTEN, 1296 (43%) were assigned as VUS. Here, we applied MD and REMD simulations to investigate the effects of PTEN missense VUS on the structural integrity of the PTEN phosphatase domain consisting the WPD, P and TI active sites. We classified a total of 147 missense VUS into 66 deleterious and 81 tolerated variants by referring to the control group comprising 54 pathogenic and 12 benign variants. The classification was largely in concordance with these classified by experimental approaches.
Collapse
Affiliation(s)
- Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| |
Collapse
|