1
|
Gao Z, Su Y, Tang J, Jin H, Ding Y, Cao RF, Wei PJ, Zheng CH. AttentionGRN: a functional and directed graph transformer for gene regulatory network reconstruction from scRNA-seq data. Brief Bioinform 2025; 26:bbaf118. [PMID: 40116659 PMCID: PMC11926986 DOI: 10.1093/bib/bbaf118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/23/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) enables the reconstruction of cell type-specific gene regulatory networks (GRNs), offering detailed insights into gene regulation at high resolution. While graph neural networks have become widely used for GRN inference, their message-passing mechanisms are often limited by issues such as over-smoothing and over-squashing, which hinder the preservation of essential network structure. To address these challenges, we propose a novel graph transformer-based model, AttentionGRN, which leverages soft encoding to enhance model expressiveness and improve the accuracy of GRN inference from scRNA-seq data. Furthermore, the GRN-oriented message aggregation strategies are designed to capture both the directed network structure information and functional information inherent in GRNs. Specifically, we design directed structure encoding to facilitate the learning of directed network topologies and employ functional gene sampling to capture key functional modules and global network structure. Our extensive experiments, conducted on 88 datasets across two distinct tasks, demonstrate that AttentionGRN consistently outperforms existing methods. Furthermore, AttentionGRN has been successfully applied to reconstruct cell type-specific GRNs for human mature hepatocytes, revealing novel hub genes and previously unidentified transcription factor-target gene regulatory associations.
Collapse
Affiliation(s)
- Zhen Gao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Yansen Su
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Jin Tang
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Huaiwan Jin
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Yun Ding
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Rui-Fen Cao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Pi-Jing Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Chun-Hou Zheng
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| |
Collapse
|
2
|
Chen X, Ma Y, Shi Y, Fu Y, Nan M, Ren Q, Gao J. Population-Level Cell Trajectory Inference Based on Gaussian Distributions. Biomolecules 2024; 14:1396. [PMID: 39595573 PMCID: PMC11592043 DOI: 10.3390/biom14111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
In the past decade, inferring developmental trajectories from single-cell data has become a significant challenge in bioinformatics. RNA velocity, with its incorporation of directional dynamics, has significantly advanced the study of single-cell trajectories. However, as single-cell RNA sequencing technology evolves, it generates complex, high-dimensional data with high noise levels. Existing trajectory inference methods, which overlook cell distribution characteristics, may perform inadequately under such conditions. To address this, we introduce CPvGTI, a Gaussian distribution-based trajectory inference method. CPvGTI utilizes a Gaussian mixture model, optimized by the Expectation-Maximization algorithm, to construct new cell populations in the original data space. By integrating RNA velocity, CPvGTI employs Gaussian Process Regression to analyze the differentiation trajectories of these cell populations. To evaluate the performance of CPvGTI, we assess CPvGTI's performance against several state-of-the-art methods using four structurally diverse simulated datasets and four real datasets. The simulation studies indicate that CPvGTI excels in pseudo-time prediction and structural reconstruction compared to existing methods. Furthermore, the discovery of new branch trajectories in human forebrain and mouse hematopoiesis datasets confirms CPvGTI's superior performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Gao
- School of Science, Jiangnan University, Wuxi 214122, China; (X.C.); (Y.M.); (Y.S.); (Y.F.); (M.N.); (Q.R.)
| |
Collapse
|
3
|
Li S, Liu Y, Shen LC, Yan H, Song J, Yu DJ. GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference. Brief Bioinform 2024; 25:bbad529. [PMID: 38261340 PMCID: PMC10805180 DOI: 10.1093/bib/bbad529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The recent advances of single-cell RNA sequencing (scRNA-seq) have enabled reliable profiling of gene expression at the single-cell level, providing opportunities for accurate inference of gene regulatory networks (GRNs) on scRNA-seq data. Most methods for inferring GRNs suffer from the inability to eliminate transitive interactions or necessitate expensive computational resources. To address these, we present a novel method, termed GMFGRN, for accurate graph neural network (GNN)-based GRN inference from scRNA-seq data. GMFGRN employs GNN for matrix factorization and learns representative embeddings for genes. For transcription factor-gene pairs, it utilizes the learned embeddings to determine whether they interact with each other. The extensive suite of benchmarking experiments encompassing eight static scRNA-seq datasets alongside several state-of-the-art methods demonstrated mean improvements of 1.9 and 2.5% over the runner-up in area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). In addition, across four time-series datasets, maximum enhancements of 2.4 and 1.3% in AUROC and AUPRC were observed in comparison to the runner-up. Moreover, GMFGRN requires significantly less training time and memory consumption, with time and memory consumed <10% compared to the second-best method. These findings underscore the substantial potential of GMFGRN in the inference of GRNs. It is publicly available at https://github.com/Lishuoyy/GMFGRN.
Collapse
Affiliation(s)
- Shuo Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Yan Liu
- School of information Engineering, Yangzhou University, 196 West Huayang, Yangzhou, 225000, China
| | - Long-Chen Shen
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - He Yan
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| |
Collapse
|