1
|
Gao Z, Su Y, Tang J, Jin H, Ding Y, Cao RF, Wei PJ, Zheng CH. AttentionGRN: a functional and directed graph transformer for gene regulatory network reconstruction from scRNA-seq data. Brief Bioinform 2025; 26:bbaf118. [PMID: 40116659 PMCID: PMC11926986 DOI: 10.1093/bib/bbaf118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/23/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) enables the reconstruction of cell type-specific gene regulatory networks (GRNs), offering detailed insights into gene regulation at high resolution. While graph neural networks have become widely used for GRN inference, their message-passing mechanisms are often limited by issues such as over-smoothing and over-squashing, which hinder the preservation of essential network structure. To address these challenges, we propose a novel graph transformer-based model, AttentionGRN, which leverages soft encoding to enhance model expressiveness and improve the accuracy of GRN inference from scRNA-seq data. Furthermore, the GRN-oriented message aggregation strategies are designed to capture both the directed network structure information and functional information inherent in GRNs. Specifically, we design directed structure encoding to facilitate the learning of directed network topologies and employ functional gene sampling to capture key functional modules and global network structure. Our extensive experiments, conducted on 88 datasets across two distinct tasks, demonstrate that AttentionGRN consistently outperforms existing methods. Furthermore, AttentionGRN has been successfully applied to reconstruct cell type-specific GRNs for human mature hepatocytes, revealing novel hub genes and previously unidentified transcription factor-target gene regulatory associations.
Collapse
Affiliation(s)
- Zhen Gao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Yansen Su
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Jin Tang
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Huaiwan Jin
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Yun Ding
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Rui-Fen Cao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Pi-Jing Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Chun-Hou Zheng
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| |
Collapse
|
2
|
Guo Y, Xiao Z. Constructing the dynamic transcriptional regulatory networks to identify phenotype-specific transcription regulators. Brief Bioinform 2024; 25:bbae542. [PMID: 39451156 PMCID: PMC11503644 DOI: 10.1093/bib/bbae542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The transcriptional regulatory network (TRN) is a graph framework that helps understand the complex transcriptional regulation mechanisms in the transcription process. Identifying the phenotype-specific transcription regulators is vital to reveal the functional roles of transcription elements in associating the specific phenotypes. Although many methods have been developed towards detecting the phenotype-specific transcription elements based on the static TRN in the past decade, most of them are not satisfactory for elucidating the phenotype-related functional roles of transcription regulators in multiple levels, as the dynamic characteristics of transcription regulators are usually ignored in static models. In this study, we introduce a novel framework called DTGN to identify the phenotype-specific transcription factors (TFs) and pathways by constructing dynamic TRNs. We first design a graph autoencoder model to integrate the phenotype-oriented time-series gene expression data and static TRN to learn the temporal representations of genes. Then, based on the learned temporal representations of genes, we develop a statistical method to construct a series of dynamic TRNs associated with the development of specific phenotypes. Finally, we identify the phenotype-specific TFs and pathways from the constructed dynamic TRNs. Results from multiple phenotypic datasets show that the proposed DTGN framework outperforms most existing methods in identifying phenotype-specific TFs and pathways. Our framework offers a new approach to exploring the functional roles of transcription regulators that associate with specific phenotypes in a dynamic model.
Collapse
Affiliation(s)
- Yang Guo
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhiqiang Xiao
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Jiang H, Wang Y, Yin C, Pan H, Chen L, Feng K, Chang Y, Sun H. SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation. Comput Biol Med 2024; 178:108690. [PMID: 38879931 DOI: 10.1016/j.compbiomed.2024.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/19/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Prevalent Gene Regulatory Network (GRN) construction methods rely on generalized correlation analysis. However, in biological systems, regulation is essentially a causal relationship that cannot be adequately captured solely through correlation. Therefore, it is more reasonable to infer GRNs from a causal perspective. Existing causal discovery algorithms typically rely on Directed Acyclic Graphs (DAGs) to model causal relationships, but it often requires traversing the entire network, which result in computational demands skyrocketing as the number of nodes grows and make causal discovery algorithms only suitable for small networks with one or two hundred nodes or fewer. In this study, we propose the SLIVER (cauSaL dIscovery Via dimEnsionality Reduction) algorithm which integrates causal structural equation model and graph decomposition. SLIVER introduces a set of factor nodes, serving as abstractions of different functional modules to integrate the regulatory relationships between genes based on their respective functions or pathways, thus reducing the GRN to the product of two low-dimensional matrices. Subsequently, we employ the structural causal model (SCM) to learn the GRN within the gene node space, enforce the DAG constraint in the low-dimensional space, and guide each factor to aggregate various functions through cosine similarity. We evaluate the performance of the SLIVER algorithm on 12 real single cell transcriptomic datasets, and demonstrate it outperforms other 12 widely used methods both in GRN inference performance and computational resource usage. The analysis of the gene information integrated by factor nodes also demonstrate the biological explanation of factor nodes in GRNs. We apply it to scRNA-seq of Type 2 diabetes mellitus to capture the transcriptional regulatory structural changes of β cells under high insulin demand.
Collapse
Affiliation(s)
- Hongyang Jiang
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Yuezhu Wang
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Chaoyi Yin
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Hao Pan
- College of Software, Jilin University, Changchun, 130012, China
| | - Liqun Chen
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Ke Feng
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Yi Chang
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China; International Center of Future Science, Jilin University, Changchun, China; Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China
| | - Huiyan Sun
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China; International Center of Future Science, Jilin University, Changchun, China; Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China.
| |
Collapse
|
4
|
Zheng T, Zheng Z, Zhou H, Guo Y, Li S. The multifaceted roles of COL4A4 in lung adenocarcinoma: An integrated bioinformatics and experimental study. Comput Biol Med 2024; 170:107896. [PMID: 38217972 DOI: 10.1016/j.compbiomed.2023.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Abnormal expression of collagen IV subunits has been reported in cancers, but the significance is not clear. No study has reported the significance of COL4A4 in lung adenocarcinoma (LUAD). METHODS COL4A4 expression data, single-cell sequencing data and clinical data were downloaded from public databases. A range of bioinformatics and experimental methods were adopted to analyze the association of COL4A4 expression with clinical parameters, tumor microenvironment (TME), drug resistance and immunotherapy response, and to investigate the roles and underlying mechanism of COL4A4 in LUAD. RESULTS COL4A4 is differentially expressed in most of cancers analyzed, being associated with prognosis, tumor stemness, immune checkpoint gene expression and TME parameters. In LUAD, COL4A4 expression is down-regulated and associated with various TME parameters, response to immunotherapy and drug resistance. LUAD patients with lower COL4A4 have worse prognosis. Knockdown of COL4A4 significantly inhibited the expression of cell-cycle associated genes, and the expression and activation of signaling pathways including JAK/STAT3, p38, and ERK pathways, and induced quiescence in LUAD cells. Besides, it significantly induced the expression of a range of bioactive molecule genes that have been shown to have critical roles in TME remodeling and immune regulation. CONCLUSIONS COL4A4 is implicated in the pathogenesis of cancers including LUAD. Its function may be multifaceted. It can modulate the activity of LUAD cells, TME remodeling and tumor stemness, thus affecting the pathological process of LUAD. COL4A4 may be a prognostic molecular marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region, 530021, PR China
| | - Zhiwen Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region, 530021, PR China
| | - Hanxi Zhou
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang Province, PR China
| | - Yiqing Guo
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang Province, PR China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region, 530021, PR China.
| |
Collapse
|