1
|
Liu Z, Qiu WR, Liu Y, Yan H, Pei W, Zhu YH, Qiu J. A comprehensive review of computational methods for Protein-DNA binding site prediction. Anal Biochem 2025; 703:115862. [PMID: 40209920 DOI: 10.1016/j.ab.2025.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Accurately identifying protein-DNA binding sites is essential for understanding the molecular mechanisms underlying biological processes, which in turn facilitates advancements in drug discovery and design. While biochemical experiments provide the most accurate way to locate DNA-binding sites, they are generally time-consuming, resource-intensive, and expensive. There is a pressing need to develop computational methods that are both efficient and accurate for DNA-binding site prediction. This study thoroughly reviews and categorizes major computational approaches for predicting DNA-binding sites, including template detection, statistical machine learning, and deep learning-based methods. The 14 state-of-the-art DNA-binding site prediction models have been benchmarked on 136 non-redundant proteins, where the deep learning-based, especially pre-trained large language model-based, methods achieve superior performance over the other two categories. Applications of these DNA-binding site prediction methods are also involved.
Collapse
Affiliation(s)
- Zi Liu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Wang-Ren Qiu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yan Liu
- Department of Computer Science, Yangzhou University, 196 Huayang West Road, Yangzhou, 225100, China
| | - He Yan
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, 159 Longpanlu Road, Nanjing, 210037, China
| | - Wenyi Pei
- Geriatric Department, Shanghai Baoshan District Wusong Central Hospital, 101 Tongtai North Road, Shanghai, 200940, China.
| | - Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
| | - Jing Qiu
- Information Department, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Asim MN, Asif T, Hassan F, Dengel A. Protein Sequence Analysis landscape: A Systematic Review of Task Types, Databases, Datasets, Word Embeddings Methods, and Language Models. Database (Oxford) 2025; 2025:baaf027. [PMID: 40448683 DOI: 10.1093/database/baaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 06/02/2025]
Abstract
Protein sequence analysis examines the order of amino acids within protein sequences to unlock diverse types of a wealth of knowledge about biological processes and genetic disorders. It helps in forecasting disease susceptibility by finding unique protein signatures, or biomarkers that are linked to particular disease states. Protein Sequence analysis through wet-lab experiments is expensive, time-consuming and error prone. To facilitate large-scale proteomics sequence analysis, the biological community is striving for utilizing AI competence for transitioning from wet-lab to computer aided applications. However, Proteomics and AI are two distinct fields and development of AI-driven protein sequence analysis applications requires knowledge of both domains. To bridge the gap between both fields, various review articles have been written. However, these articles focus revolves around few individual tasks or specific applications rather than providing a comprehensive overview about wide tasks and applications. Following the need of a comprehensive literature that presents a holistic view of wide array of tasks and applications, contributions of this manuscript are manifold: It bridges the gap between Proteomics and AI fields by presenting a comprehensive array of AI-driven applications for 63 distinct protein sequence analysis tasks. It equips AI researchers by facilitating biological foundations of 63 protein sequence analysis tasks. It enhances development of AI-driven protein sequence analysis applications by providing comprehensive details of 68 protein databases. It presents a rich data landscape, encompassing 627 benchmark datasets of 63 diverse protein sequence analysis tasks. It highlights the utilization of 25 unique word embedding methods and 13 language models in AI-driven protein sequence analysis applications. It accelerates the development of AI-driven applications by facilitating current state-of-the-art performances across 63 protein sequence analysis tasks.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern 67663, Germany
- Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| | - Tayyaba Asif
- Department of Computer Science, Rheinland Pfälzische Technische Universität, Kaiserslautern 67663, Germany
| | - Faiza Hassan
- Department of Computer Science, Rheinland Pfälzische Technische Universität, Kaiserslautern 67663, Germany
| | - Andreas Dengel
- German Research Center for Artificial Intelligence, Kaiserslautern 67663, Germany
- Department of Computer Science, Rheinland Pfälzische Technische Universität, Kaiserslautern 67663, Germany
- Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| |
Collapse
|
3
|
Puniya BL. Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications. J Mol Biol 2025:169181. [PMID: 40316010 DOI: 10.1016/j.jmb.2025.169181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
Understanding of complex biological systems remains a significant challenge due to their high dimensionality, nonlinearity, and context-specific behavior. Artificial intelligence (AI) and mechanistic modeling are becoming essential tools for studying such complex systems. Mechanistic modeling can facilitate the construction of simulatable models that are interpretable but often struggle with scalability and parameters estimation. AI can integrate multi-omics data to create predictive models, but it lacks interpretability. The gap between these two modeling methods limits our ability to develop comprehensive and predictive models for biomedical applications. This article reviews the most recent advancements in the integration of AI and mechanistic modeling to fill this gap. Recently, with omics availability, AI has led to new discoveries in mechanistic computational modeling. The mechanistic models can also help in getting insight into the mechanism for prediction made by AI models. This integration is helpful in modeling complex systems, estimating the parameters that are hard to capture in experiments, and creating surrogate models to reduce computational costs because of expensive mechanistic model simulations. This article focuses on advancements in mechanistic computational models and AI models and their integration for scientific discoveries in biology, pharmacology, drug discovery and diseases. The mechanistic models with AI integration can facilitate biological discoveries to advance our understanding of disease mechanisms, drug development, and personalized medicine. The article also highlights the role of AI and mechanistic model integration in the development of more advanced models in the biomedical domain, such as medical digital twins and virtual patients for pharmacological discoveries.
Collapse
Affiliation(s)
- Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
4
|
Wang Y, Wang B, Zou J, Wu A, Liu Y, Wan Y, Luo J, Wu J. Capsule neural network and its applications in drug discovery. iScience 2025; 28:112217. [PMID: 40241764 PMCID: PMC12002614 DOI: 10.1016/j.isci.2025.112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Deep learning holds great promise in drug discovery, yet its application is hindered by high labeling costs and limited datasets. Developing algorithms that effectively learn from sparsely labeled data is crucial. Capsule networks (CapsNet), introduced in 2017, solve the spatial information loss in traditional neural networks and excel in handling small datasets by capturing spatial hierarchical relationships among features. This capability makes CapsNet particularly promising for drug discovery, where data scarcity is a common challenge. Various modified CapsNet architectures have been successfully applied to drug design and discovery tasks. This review provides a comprehensive analysis of CapsNet's theoretical foundations, its current applications in drug discovery, and its performance in addressing key challenges in the field. Additionally, the study highlights the limitations of CapsNet and outlines potential future research directions to further enhance its utility in drug discovery, offering valuable insights for researchers in both computational and pharmaceutical sciences.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jun Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Asim MN, Ibrahim MA, Zaib A, Dengel A. DNA sequence analysis landscape: a comprehensive review of DNA sequence analysis task types, databases, datasets, word embedding methods, and language models. Front Med (Lausanne) 2025; 12:1503229. [PMID: 40265190 PMCID: PMC12011883 DOI: 10.3389/fmed.2025.1503229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Deoxyribonucleic acid (DNA) serves as fundamental genetic blueprint that governs development, functioning, growth, and reproduction of all living organisms. DNA can be altered through germline and somatic mutations. Germline mutations underlie hereditary conditions, while somatic mutations can be induced by various factors including environmental influences, chemicals, lifestyle choices, and errors in DNA replication and repair mechanisms which can lead to cancer. DNA sequence analysis plays a pivotal role in uncovering the intricate information embedded within an organism's genetic blueprint and understanding the factors that can modify it. This analysis helps in early detection of genetic diseases and the design of targeted therapies. Traditional wet-lab experimental DNA sequence analysis through traditional wet-lab experimental methods is costly, time-consuming, and prone to errors. To accelerate large-scale DNA sequence analysis, researchers are developing AI applications that complement wet-lab experimental methods. These AI approaches can help generate hypotheses, prioritize experiments, and interpret results by identifying patterns in large genomic datasets. Effective integration of AI methods with experimental validation requires scientists to understand both fields. Considering the need of a comprehensive literature that bridges the gap between both fields, contributions of this paper are manifold: It presents diverse range of DNA sequence analysis tasks and AI methodologies. It equips AI researchers with essential biological knowledge of 44 distinct DNA sequence analysis tasks and aligns these tasks with 3 distinct AI-paradigms, namely, classification, regression, and clustering. It streamlines the integration of AI into DNA sequence analysis tasks by consolidating information of 36 diverse biological databases that can be used to develop benchmark datasets for 44 different DNA sequence analysis tasks. To ensure performance comparisons between new and existing AI predictors, it provides insights into 140 benchmark datasets related to 44 distinct DNA sequence analysis tasks. It presents word embeddings and language models applications across 44 distinct DNA sequence analysis tasks. It streamlines the development of new predictors by providing a comprehensive survey of 39 word embeddings and 67 language models based predictive pipeline performance values as well as top performing traditional sequence encoding-based predictors and their performances across 44 DNA sequence analysis tasks.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
- Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Arooj Zaib
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Andreas Dengel
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
- Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
6
|
Tahmid MT, Hasan AKMM, Bayzid MS. TransBind allows precise detection of DNA-binding proteins and residues using language models and deep learning. Commun Biol 2025; 8:568. [PMID: 40185915 PMCID: PMC11971327 DOI: 10.1038/s42003-025-07534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/13/2025] [Indexed: 04/07/2025] Open
Abstract
Identifying DNA-binding proteins and their binding residues is critical for understanding diverse biological processes, but conventional experimental approaches are slow and costly. Existing machine learning methods, while faster, often lack accuracy and struggle with data imbalance, relying heavily on evolutionary profiles like PSSMs and HMMs derived from multiple sequence alignments (MSAs). These dependencies make them unsuitable for orphan proteins or those that evolve rapidly. To address these challenges, we introduce TransBind, an alignment-free deep learning framework that predicts DNA-binding proteins and residues directly from a single primary sequence, eliminating the need for MSAs. By leveraging features from pre-trained protein language models, TransBind effectively handles the issue of data imbalance and achieves superior performance. Extensive evaluations using diverse experimental datasets and case studies demonstrate that TransBind significantly outperforms state-of-the-art methods in terms of both accuracy and computational efficiency. TransBind is available as a web server at https://trans-bind-web-server-frontend.vercel.app/ .
Collapse
Affiliation(s)
- Md Toki Tahmid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - A K M Mehedi Hasan
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
| |
Collapse
|
7
|
Mou M, Zhang Z, Pan Z, Zhu F. Deep Learning for Predicting Biomolecular Binding Sites of Proteins. RESEARCH (WASHINGTON, D.C.) 2025; 8:0615. [PMID: 39995900 PMCID: PMC11848751 DOI: 10.34133/research.0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
The rapid evolution of deep learning has markedly enhanced protein-biomolecule binding site prediction, offering insights essential for drug discovery, mutation analysis, and molecular biology. Advancements in both sequence-based and structure-based methods demonstrate their distinct strengths and limitations. Sequence-based approaches offer efficiency and adaptability, while structure-based techniques provide spatial precision but require high-quality structural data. Emerging trends in hybrid models that combine multimodal data, such as integrating sequence and structural information, along with innovations in geometric deep learning, present promising directions for improving prediction accuracy. This perspective summarizes challenges such as computational demands and dynamic modeling and proposes strategies for future research. The ultimate goal is the development of computationally efficient and flexible models capable of capturing the complexity of real-world biomolecular interactions, thereby broadening the scope and applicability of binding site predictions across a wide range of biomedical contexts.
Collapse
Affiliation(s)
| | | | | | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Wu S, Zhang S, Liu CM, Fernie AR, Yan S. Recent Advances in Mass Spectrometry-Based Protein Interactome Studies. Mol Cell Proteomics 2025; 24:100887. [PMID: 39608603 PMCID: PMC11745815 DOI: 10.1016/j.mcpro.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
The foundation of all biological processes is the network of diverse and dynamic protein interactions with other molecules in cells known as the interactome. Understanding the interactome is crucial for elucidating molecular mechanisms but has been a longstanding challenge. Recent developments in mass spectrometry (MS)-based techniques, including affinity purification, proximity labeling, cross-linking, and co-fractionation mass spectrometry (MS), have significantly enhanced our abilities to study the interactome. They do so by identifying and quantifying protein interactions yielding profound insights into protein organizations and functions. This review summarizes recent advances in MS-based interactomics, focusing on the development of techniques that capture protein-protein, protein-metabolite, and protein-nucleic acid interactions. Additionally, we discuss how integrated MS-based approaches have been applied to diverse biological samples, focusing on significant discoveries that have leveraged our understanding of cellular functions. Finally, we highlight state-of-the-art bioinformatic approaches for predictions of interactome and complex modeling, as well as strategies for combining experimental interactome data with computation methods, thereby enhancing the ability of MS-based techniques to identify protein interactomes. Indeed, advances in MS technologies and their integrations with computational biology provide new directions and avenues for interactome research, leveraging new insights into mechanisms that govern the molecular architecture of living cells and, thereby, our comprehension of biological processes.
Collapse
Affiliation(s)
- Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Alisdair R Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shijuan Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
9
|
Feng R, Wang X, Xia Z, Han T, Wang H, Yu W. MHTAPred-SS: A Highly Targeted Autoencoder-Driven Deep Multi-Task Learning Framework for Accurate Protein Secondary Structure Prediction. Int J Mol Sci 2024; 25:13444. [PMID: 39769208 PMCID: PMC11677681 DOI: 10.3390/ijms252413444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Accurate protein secondary structure prediction (PSSP) plays a crucial role in biopharmaceutics and disease diagnosis. Current prediction methods are mainly based on multiple sequence alignment (MSA) encoding and collaborative operations of diverse networks. However, existing encoding approaches lead to poor feature space utilization, and encoding quality decreases with fewer homologous proteins. Moreover, the performance of simple stacked networks is greatly limited by feature extraction capabilities and learning strategies. To this end, we propose MHTAPred-SS, a novel PSSP framework based on the fusion of six features, including the embedding feature derived from a pre-trained protein language model. First, we propose a highly targeted autoencoder (HTA) as the driver to encode sequences in a homologous protein-independent manner. Second, under the guidance of biological knowledge, we design a protein secondary structure prediction model based on the multi-task learning strategy (PSSP-MTL). Experimental results on six independent test sets show that MHTAPred-SS achieves state-of-the-art performance, with values of 88.14%, 84.89%, 78.74% and 77.15% for Q3, SOV3, Q8 and SOV8 metrics on the TEST2016 dataset, respectively. Additionally, we demonstrate that MHTAPred-SS has significant advantages in single-category and boundary secondary structure prediction, and can finely capture the distribution of secondary structure segments, thereby contributing to subsequent tasks.
Collapse
Affiliation(s)
| | - Xun Wang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China; (R.F.); (Z.X.); (T.H.); (H.W.); (W.Y.)
| | | | | | | | | |
Collapse
|
10
|
Zhang L, Wang S, Wang Y, Zhao T. HBFormer: a single-stream framework based on hybrid attention mechanism for identification of human-virus protein-protein interactions. Bioinformatics 2024; 40:btae724. [PMID: 39673490 PMCID: PMC11648999 DOI: 10.1093/bioinformatics/btae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
MOTIVATION Exploring human-virus protein-protein interactions (PPIs) is crucial for unraveling the underlying pathogenic mechanisms of viruses. Limitations in the coverage and scalability of high-throughput approaches have impeded the identification of certain key interactions. Current popular computational methods adopt a two-stream pipeline to identify PPIs, which can only achieve relation modeling of protein pairs at the classification phase. However, the fitting capacity of the classifier is insufficient to comprehensively mine the complex interaction patterns between protein pairs. RESULTS In this study, we propose a pioneering single-stream framework HBFormer that combines hybrid attention mechanism and multimodal feature fusion strategy for identifying human-virus PPIs. The Transformer architecture based on hybrid attention can bridge the bidirectional information flows between human protein and viral protein, thus unifying joint feature learning and relation modeling of protein pairs. The experimental results demonstrate that HBFormer not only achieves superior performance on multiple human-virus PPI datasets but also outperforms 5 other state-of-the-art human-virus PPI identification methods. Moreover, ablation studies and scalability experiments further validate the effectiveness of our single-stream framework. AVAILABILITY AND IMPLEMENTATION Codes and datasets are available at https://github.com/RmQ5v/HBFormer.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Sicong Wang
- Institute of Bioinformatics, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Tianyi Zhao
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| |
Collapse
|
11
|
Basu S, Yu J, Kihara D, Kurgan L. Twenty years of advances in prediction of nucleic acid-binding residues in protein sequences. Brief Bioinform 2024; 26:bbaf016. [PMID: 39833102 PMCID: PMC11745544 DOI: 10.1093/bib/bbaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Computational prediction of nucleic acid-binding residues in protein sequences is an active field of research, with over 80 methods that were released in the past 2 decades. We identify and discuss 87 sequence-based predictors that include dozens of recently published methods that are surveyed for the first time. We overview historical progress and examine multiple practical issues that include availability and impact of predictors, key features of their predictive models, and important aspects related to their training and assessment. We observe that the past decade has brought increased use of deep neural networks and protein language models, which contributed to substantial gains in the predictive performance. We also highlight advancements in vital and challenging issues that include cross-predictions between deoxyribonucleic acid (DNA)-binding and ribonucleic acid (RNA)-binding residues and targeting the two distinct sources of binding annotations, structure-based versus intrinsic disorder-based. The methods trained on the structure-annotated interactions tend to perform poorly on the disorder-annotated binding and vice versa, with only a few methods that target and perform well across both annotation types. The cross-predictions are a significant problem, with some predictors of DNA-binding or RNA-binding residues indiscriminately predicting interactions with both nucleic acid types. Moreover, we show that methods with web servers are cited substantially more than tools without implementation or with no longer working implementations, motivating the development and long-term maintenance of the web servers. We close by discussing future research directions that aim to drive further progress in this area.
Collapse
Affiliation(s)
- Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| | - Jing Yu
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, 915 Mitch Daniels Boulevard, West Lafayette, IN 47907, United States
- Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| |
Collapse
|
12
|
Wang J, Liu Y, Tian B. Protein-small molecule binding site prediction based on a pre-trained protein language model with contrastive learning. J Cheminform 2024; 16:125. [PMID: 39506806 PMCID: PMC11542454 DOI: 10.1186/s13321-024-00920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Predicting protein-small molecule binding sites, the initial step in structure-guided drug design, remains challenging for proteins lacking experimentally derived ligand-bound structures. Here, we propose CLAPE-SMB, which integrates a pre-trained protein language model with contrastive learning to provide high accuracy predictions of small molecule binding sites that can accommodate proteins without a published crystal structure. We trained and tested CLAPE-SMB on the SJC dataset, a non-redundant dataset based on sc-PDB, JOINED, and COACH420, and achieved an MCC of 0.529. We also compiled the UniProtSMB dataset, which merges sites from similar proteins based on raw data from UniProtKB database, and achieved an MCC of 0.699 on the test set. In addition, CLAPE-SMB achieved an MCC of 0.815 on our intrinsically disordered protein (IDP) dataset that contains 336 non-redundant sequences. Case studies of DAPK1, RebH, and Nep1 support the potential of this binding site prediction tool to aid in drug design. The code and datasets are freely available at https://github.com/JueWangTHU/CLAPE-SMB . SCIENTIFIC CONTRIBUTION: CLAPE-SMB combines a pre-trained protein language model with contrastive learning to accurately predict protein-small molecule binding sites, especially for proteins without experimental structures, such as IDPs. Trained across various datasets, this model shows strong adaptability, making it a valuable tool for advancing drug design and understanding protein-small molecule interactions.
Collapse
Affiliation(s)
- Jue Wang
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yufan Liu
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Boxue Tian
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Zhang L, Liu T. PDNAPred: Interpretable prediction of protein-DNA binding sites based on pre-trained protein language models. Int J Biol Macromol 2024; 281:136147. [PMID: 39357703 DOI: 10.1016/j.ijbiomac.2024.136147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Protein-DNA interactions play critical roles in various biological processes and are essential for drug discovery. However, traditional experimental methods are labor-intensive and unable to keep pace with the increasing volume of protein sequences, leading to a substantial number of proteins lacking DNA-binding annotations. Therefore, developing an efficient computational method to identify protein-DNA binding sites is crucial. Unfortunately, most existing computational methods rely on manually selected features or protein structure information, making these methods inapplicable to large-scale prediction tasks. In this study, we introduced PDNAPred, a sequence-based method that combines two pre-trained protein language models with a designed CNN-GRU network to identify DNA-binding sites. Additionally, to tackle the issue of imbalanced dataset samples, we employed focal loss. Our comprehensive experiments demonstrated that PDNAPred significantly improved the accuracy of DNA-binding site prediction, outperforming existing state-of-the-art sequence-based methods. Remarkably, PDNAPred also achieved results comparable to advanced structure-based methods. The designed CNN-GRU network enhances its capability to detect DNA-binding sites accurately. Furthermore, we validated the versatility of PDNAPred by training it on RNA-binding site datasets, showing its potential as a general framework for amino acid binding site prediction. Finally, we conducted model interpretability analysis to elucidate the reasons behind PDNAPred's outstanding performance.
Collapse
Affiliation(s)
- Lingrong Zhang
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Li Q, Hu Z, Wang Y, Li L, Fan Y, King I, Jia G, Wang S, Song L, Li Y. Progress and opportunities of foundation models in bioinformatics. Brief Bioinform 2024; 25:bbae548. [PMID: 39461902 PMCID: PMC11512649 DOI: 10.1093/bib/bbae548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024] Open
Abstract
Bioinformatics has undergone a paradigm shift in artificial intelligence (AI), particularly through foundation models (FMs), which address longstanding challenges in bioinformatics such as limited annotated data and data noise. These AI techniques have demonstrated remarkable efficacy across various downstream validation tasks, effectively representing diverse biological entities and heralding a new era in computational biology. The primary goal of this survey is to conduct a general investigation and summary of FMs in bioinformatics, tracing their evolutionary trajectory, current research landscape, and methodological frameworks. Our primary focus is on elucidating the application of FMs to specific biological problems, offering insights to guide the research community in choosing appropriate FMs for tasks like sequence analysis, structure prediction, and function annotation. Each section delves into the intricacies of the targeted challenges, contrasting the architectures and advancements of FMs with conventional methods and showcasing their utility across different biological domains. Further, this review scrutinizes the hurdles and constraints encountered by FMs in biology, including issues of data noise, model interpretability, and potential biases. This analysis provides a theoretical groundwork for understanding the circumstances under which certain FMs may exhibit suboptimal performance. Lastly, we outline prospective pathways and methodologies for the future development of FMs in biological research, facilitating ongoing innovation in the field. This comprehensive examination not only serves as an academic reference but also as a roadmap for forthcoming explorations and applications of FMs in biology.
Collapse
Affiliation(s)
- Qing Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Yixuan Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Lei Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Yimin Fan
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Gengjie Jia
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
- Shenzhen Institute of Advanced Technology, Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Le Song
- BioMap, Zhongguancun Life Science Park, Haidian District, Beijing, 100085, China
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
15
|
Niu B, Lee B, Wang L, Chen W, Johnson J. The Accurate Prediction of Antibody Deamidations by Combining High-Throughput Automated Peptide Mapping and Protein Language Model-Based Deep Learning. Antibodies (Basel) 2024; 13:74. [PMID: 39311379 PMCID: PMC11417914 DOI: 10.3390/antib13030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Therapeutic antibodies such as monoclonal antibodies (mAbs), bispecific and multispecific antibodies are pivotal in therapeutic protein development and have transformed disease treatments across various therapeutic areas. The integrity of therapeutic antibodies, however, is compromised by sequence liabilities, notably deamidation, where asparagine (N) and glutamine (Q) residues undergo chemical degradations. Deamidation negatively impacts the efficacy, stability, and safety of diverse classes of antibodies, thus necessitating the critical need for the early and accurate identification of vulnerable sites. In this article, a comprehensive antibody deamidation-specific dataset (n = 2285) of varied modalities was created by using high-throughput automated peptide mapping followed by supervised machine learning to predict the deamidation propensities, as well as the extents, throughout the entire antibody sequences. We propose a novel chimeric deep learning model, integrating protein language model (pLM)-derived embeddings with local sequence information for enhanced deamidation predictions. Remarkably, this model requires only sequence inputs, eliminating the need for laborious feature engineering. Our approach demonstrates state-of-the-art performance, offering a streamlined workflow for high-throughput automated peptide mapping and deamidation prediction, with the potential of broader applicability to other antibody sequence liabilities.
Collapse
Affiliation(s)
- Ben Niu
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA 92121, USA
| | - Benjamin Lee
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA 92121, USA
| | - Lili Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Wen Chen
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA 92121, USA
| | - Jeffrey Johnson
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA 92121, USA
| |
Collapse
|
16
|
Zeng W, Dou Y, Pan L, Xu L, Peng S. Improving prediction performance of general protein language model by domain-adaptive pretraining on DNA-binding protein. Nat Commun 2024; 15:7838. [PMID: 39244557 PMCID: PMC11380688 DOI: 10.1038/s41467-024-52293-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
DNA-protein interactions exert the fundamental structure of many pivotal biological processes, such as DNA replication, transcription, and gene regulation. However, accurate and efficient computational methods for identifying these interactions are still lacking. In this study, we propose a method ESM-DBP through refining the DNA-binding protein sequence repertory and domain-adaptive pretraining based the general protein language model. Our method considers the lacking exploration of general language model for DNA-binding protein domain-specific knowledge, so we screen out 170,264 DNA-binding protein sequences to construct the domain-adaptive language model. Experimental results on four downstream tasks show that ESM-DBP provides a better feature representation of DNA-binding protein compared to the original language model, resulting in improved prediction performance and outperforming the state-of-the-art methods. Moreover, ESM-DBP can still perform well even for those sequences with only a few homologous sequences. ChIP-seq on two predicted cases further support the validity of the proposed method.
Collapse
Affiliation(s)
- Wenwu Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Yutao Dou
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Liangrui Pan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Liwen Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
17
|
Wang B, Li W. Advances in the Application of Protein Language Modeling for Nucleic Acid Protein Binding Site Prediction. Genes (Basel) 2024; 15:1090. [PMID: 39202449 PMCID: PMC11353971 DOI: 10.3390/genes15081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Protein and nucleic acid binding site prediction is a critical computational task that benefits a wide range of biological processes. Previous studies have shown that feature selection holds particular significance for this prediction task, making the generation of more discriminative features a key area of interest for many researchers. Recent progress has shown the power of protein language models in handling protein sequences, in leveraging the strengths of attention networks, and in successful applications to tasks such as protein structure prediction. This naturally raises the question of the applicability of protein language models in predicting protein and nucleic acid binding sites. Various approaches have explored this potential. This paper first describes the development of protein language models. Then, a systematic review of the latest methods for predicting protein and nucleic acid binding sites is conducted by covering benchmark sets, feature generation methods, performance comparisons, and feature ablation studies. These comparisons demonstrate the importance of protein language models for the prediction task. Finally, the paper discusses the challenges of protein and nucleic acid binding site prediction and proposes possible research directions and future trends. The purpose of this survey is to furnish researchers with actionable suggestions for comprehending the methodologies used in predicting protein-nucleic acid binding sites, fostering the creation of protein-centric language models, and tackling real-world obstacles encountered in this field.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China;
| |
Collapse
|
18
|
Wang J, Quan L, Jin Z, Wu H, Ma X, Wang X, Xie J, Pan D, Chen T, Wu T, Lyu Q. MultiModRLBP: A Deep Learning Approach for Multi-Modal RNA-Small Molecule Ligand Binding Sites Prediction. IEEE J Biomed Health Inform 2024; 28:4995-5006. [PMID: 38739505 DOI: 10.1109/jbhi.2024.3400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This study aims to tackle the intricate challenge of predicting RNA-small molecule binding sites to explore the potential value in the field of RNA drug targets. To address this challenge, we propose the MultiModRLBP method, which integrates multi-modal features using deep learning algorithms. These features include 3D structural properties at the nucleotide base level of the RNA molecule, relational graphs based on overall RNA structure, and rich RNA semantic information. In our investigation, we gathered 851 interactions between RNA and small molecule ligand from the RNAglib dataset and RLBind training set. Unlike conventional training sets, this collection broadened its scope by including RNA complexes that have the same RNA sequence but change their respective binding sites due to structural differences or the presence of different ligands. This enhancement enables the MultiModRLBP model to more accurately capture subtle changes at the structural level, ultimately improving its ability to discern nuances among similar RNA conformations. Furthermore, we evaluated MultiModRLBP on two classic test sets, Test18 and Test3, highlighting its performance disparities on small molecules based on metal and non-metal ions. Additionally, we conducted a structural sensitivity analysis on specific complex categories, considering RNA instances with varying degrees of structural changes and whether they share the same ligands. The research results indicate that MultiModRLBP outperforms the current state-of-the-art methods on multiple classic test sets, particularly excelling in predicting binding sites for non-metal ions and instances where the binding sites are widely distributed along the sequence. MultiModRLBP also can be used as a potential tool when the RNA structure is perturbed or the RNA experimental tertiary structure is not available. Most importantly, MultiModRLBP exhibits the capability to distinguish binding characteristics of RNA that are structurally diverse yet exhibit sequence similarity. These advancements hold promise in reducing the costs associated with the development of RNA-targeted drugs.
Collapse
|