1
|
Sun Q, Wang H, Xie J, Wang L, Mu J, Li J, Ren Y, Lai L. Computer-Aided Drug Discovery for Undruggable Targets. Chem Rev 2025. [PMID: 40423592 DOI: 10.1021/acs.chemrev.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Undruggable targets are those of therapeutical significance but challenging for conventional drug design approaches. Such targets often exhibit unique features, including highly dynamic structures, a lack of well-defined ligand-binding pockets, the presence of highly conserved active sites, and functional modulation by protein-protein interactions. Recent advances in computational simulations and artificial intelligence have revolutionized the drug design landscape, giving rise to innovative strategies for overcoming these obstacles. In this review, we highlight the latest progress in computational approaches for drug design against undruggable targets, present several successful case studies, and discuss remaining challenges and future directions. Special emphasis is placed on four primary target categories: intrinsically disordered proteins, protein allosteric regulation, protein-protein interactions, and protein degradation, along with discussion of emerging target types. We also examine how AI-driven methodologies have transformed the field, from applications in protein-ligand complex structure prediction and virtual screening to de novo ligand generation for undruggable targets. Integration of computational methods with experimental techniques is expected to bring further breakthroughs to overcome the hurdles of undruggable targets. As the field continues to evolve, these advancements hold great promise to expand the druggable space, offering new therapeutic opportunities for previously untreatable diseases.
Collapse
Affiliation(s)
- Qi Sun
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Hanping Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Liying Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junxi Mu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junren Li
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhao Ren
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Li P, Mei C, Raza SHA, Cheng G, Ning Y, Zhang L, Zan L. Arginine (315) is required for the PLIN2-CGI-58 interface and plays a functional role in regulating nascent LDs formation in bovine adipocytes. Genomics 2024; 116:110817. [PMID: 38431031 DOI: 10.1016/j.ygeno.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.
Collapse
Affiliation(s)
- Peiwei Li
- Shaanxi Institute of Zoology, Xi'an, Shaanxi, 710032, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gong Cheng
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Ning
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Zhang
- School of Physical Education, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Linsen Zan
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Ye J, Li A, Zheng H, Yang B, Lu Y. Machine Learning Advances in Predicting Peptide/Protein-Protein Interactions Based on Sequence Information for Lead Peptides Discovery. Adv Biol (Weinh) 2023; 7:e2200232. [PMID: 36775876 DOI: 10.1002/adbi.202200232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/30/2022] [Indexed: 02/14/2023]
Abstract
Peptides have shown increasing advantages and significant clinical value in drug discovery and development. With the development of high-throughput technologies and artificial intelligence (AI), machine learning (ML) methods for discovering new lead peptides have been expanded and incorporated into rational drug design. Predictions of peptide-protein interactions (PepPIs) and protein-protein interactions (PPIs) are both opportunities and challenges in computational biology, which will help to better understand the mechanisms of disease and provide the impetus for the discovery of lead peptides. This paper comprehensively reviews computational models for PepPI and PPI predictions. It begins with an introduction of various databases of peptide ligands and target proteins. Then it discusses data formats and feature representations for proteins and peptides. Furthermore, classical ML methods and emerging deep learning (DL) methods that can be used to train prediction models of PepPI and PPI are classified into four categories, and their advantages and disadvantages are analyzed. To assess the relative performance of different models, different validation protocols and evaluation indexes are discussed. The goal of this review is to help researchers quickly get started to develop computational frameworks using these integrated resources and eventually promote the discovery of lead peptides.
Collapse
Affiliation(s)
- Jiahao Ye
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - An Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Hao Zheng
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Banghua Yang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
4
|
Sousa A, Rocha S, Vieira J, Reboiro-Jato M, López-Fernández H, Vieira CP. On the identification of potential novel therapeutic targets for spinocerebellar ataxia type 1 (SCA1) neurodegenerative disease using EvoPPI3. J Integr Bioinform 2023; 20:jib-2022-0056. [PMID: 36848492 PMCID: PMC10561075 DOI: 10.1515/jib-2022-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/26/2022] [Indexed: 03/01/2023] Open
Abstract
EvoPPI (http://evoppi.i3s.up.pt), a meta-database for protein-protein interactions (PPI), has been upgraded (EvoPPI3) to accept new types of data, namely, PPI from patients, cell lines, and animal models, as well as data from gene modifier experiments, for nine neurodegenerative polyglutamine (polyQ) diseases caused by an abnormal expansion of the polyQ tract. The integration of the different types of data allows users to easily compare them, as here shown for Ataxin-1, the polyQ protein involved in spinocerebellar ataxia type 1 (SCA1) disease. Using all available datasets and the data here obtained for Drosophila melanogaster wt and exp Ataxin-1 mutants (also available at EvoPPI3), we show that, in humans, the Ataxin-1 network is much larger than previously thought (380 interactors), with at least 909 interactors. The functional profiling of the newly identified interactors is similar to the ones already reported in the main PPI databases. 16 out of 909 interactors are putative novel SCA1 therapeutic targets, and all but one are already being studied in the context of this disease. The 16 proteins are mainly involved in binding and catalytic activity (mainly kinase activity), functional features already thought to be important in the SCA1 disease.
Collapse
Affiliation(s)
- André Sousa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135Porto, Portugal
| | - Sara Rocha
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135Porto, Portugal
| | - Miguel Reboiro-Jato
- Department of Computer Science, CINBIO, Universidade de Vigo, ESEI – Escuela Superior de Ingeniería Informática, 32004Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Hugo López-Fernández
- Department of Computer Science, CINBIO, Universidade de Vigo, ESEI – Escuela Superior de Ingeniería Informática, 32004Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135Porto, Portugal
| |
Collapse
|
5
|
Guo Z, Liu L, Feng M, Su K, Chi R, Li K, Lu Q, Su X, Da L, Cao S, Zhang M, Meng L, Cao D, Wang J, He G, Shi Y. 3D genome assisted protein–protein interaction prediction. FUTURE GENERATION COMPUTER SYSTEMS 2022; 137:87-96. [DOI: 10.1016/j.future.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
6
|
Das S, Chakrabarti S. Classification and prediction of protein-protein interaction interface using machine learning algorithm. Sci Rep 2021; 11:1761. [PMID: 33469042 PMCID: PMC7815773 DOI: 10.1038/s41598-020-80900-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Structural insight of the protein-protein interaction (PPI) interface can provide knowledge about the kinetics, thermodynamics and molecular functions of the complex while elucidating its role in diseases and further enabling it as a potential therapeutic target. However, owing to experimental lag in solving protein-protein complex structures, three-dimensional (3D) knowledge of the PPI interfaces can be gained via computational approaches like molecular docking and post-docking analyses. Despite development of numerous docking tools and techniques, success in identification of native like interfaces based on docking score functions is limited. Hence, we employed an in-depth investigation of the structural features of the interface that might successfully delineate native complexes from non-native ones. We identify interface properties, which show statistically significant difference between native and non-native interfaces belonging to homo and hetero, protein-protein complexes. Utilizing these properties, a support vector machine (SVM) based classification scheme has been implemented to differentiate native and non-native like complexes generated using docking decoys. Benchmarking and comparative analyses suggest very good performance of our SVM classifiers. Further, protein interactions, which are proven via experimental findings but not resolved structurally, were subjected to this approach where 3D-models of the complexes were generated and most likely interfaces were predicted. A web server called Protein Complex Prediction by Interface Properties (PCPIP) is developed to predict whether interface of a given protein-protein dimer complex resembles known protein interfaces. The server is freely available at http://www.hpppi.iicb.res.in/pcpip/ .
Collapse
Affiliation(s)
- Subhrangshu Das
- grid.417635.20000 0001 2216 5074Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB India
| | - Saikat Chakrabarti
- grid.417635.20000 0001 2216 5074Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB India
| |
Collapse
|
7
|
Guo Z, Su K, Liu L, Su X, Feng M, Cao S, Zhang M, Chi R, Meng L, He G, Shi Y. Improving Protein-protein Interaction Prediction by Incorporating 3D Genome Information. LECTURE NOTES IN COMPUTER SCIENCE 2021:511-520. [DOI: 10.1007/978-3-030-91415-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Shin WH, Kumazawa K, Imai K, Hirokawa T, Kihara D. Current Challenges and Opportunities in Designing Protein-Protein Interaction Targeted Drugs. Adv Appl Bioinform Chem 2020; 13:11-25. [PMID: 33209039 PMCID: PMC7669531 DOI: 10.2147/aabc.s235542] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
It has been noticed that the efficiency of drug development has been decreasing in the past few decades. To overcome the situation, protein-protein interactions (PPIs) have been identified as new drug targets as early as 2000. PPIs are more abundant in human cells than single proteins and play numerous important roles in cellular processes including diseases. However, PPIs have very different physicochemical features from the conventional drug targets, which make targeting PPIs challenging. Therefore, as of now, only a small number of PPI inhibitors have been approved or progressed to a stage of clinical trial. In this article, we first overview previous works that analyzed differences between PPIs with PPI targeting ligands and conventional drugs with their binding pockets. Then, we constructed an up-to-date list of PPI targeting drugs that have been approved or are currently under clinical trial and have bound drug-target structures available. Using the dataset, we analyzed the PPIs and their ligands using several scores of druggability. Druggability scores showed that PPI sites and their drugs targeting PPIs are less druggable than conventional binding pockets and drugs, which also indicates that PPI drugs do not follow the conventional rules for drug design, such as Lipinski's rule of five. Our analyses suggest that developing a new rule would be beneficial for guiding PPI-drug discovery.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Chemical Science Education, Sunchon National University, Suncheon57922, Republic of Korea
| | - Keiko Kumazawa
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Tokyo191-8512, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo135-0064, Japan
| | - Takatsugu Hirokawa
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo135-0064, Japan
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN47906, USA
- Department of Computer Science, Purdue University, West Lafayette, IN47906, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN47906, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Care, University of Cincinnati, Cincinnati, OH45229, USA
| |
Collapse
|
9
|
Hou Q, De Geest PFG, Griffioen CJ, Abeln S, Heringa J, Feenstra KA. SeRenDIP: SEquential REmasteriNg to DerIve profiles for fast and accurate predictions of PPI interface positions. Bioinformatics 2020; 35:4794-4796. [PMID: 31116381 DOI: 10.1093/bioinformatics/btz428] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Interpretation of ubiquitous protein sequence data has become a bottleneck in biomolecular research, due to a lack of structural and other experimental annotation data for these proteins. Prediction of protein interaction sites from sequence may be a viable substitute. We therefore recently developed a sequence-based random forest method for protein-protein interface prediction, which yielded a significantly increased performance than other methods on both homomeric and heteromeric protein-protein interactions. Here, we present a webserver that implements this method efficiently. RESULTS With the aim of accelerating our previous approach, we obtained sequence conservation profiles by re-mastering the alignment of homologous sequences found by PSI-BLAST. This yielded a more than 10-fold speedup and at least the same accuracy, as reported previously for our method; these results allowed us to offer the method as a webserver. The web-server interface is targeted to the non-expert user. The input is simply a sequence of the protein of interest, and the output a table with scores indicating the likelihood of having an interaction interface at a certain position. As the method is sequence-based and not sensitive to the type of protein interaction, we expect this webserver to be of interest to many biological researchers in academia and in industry. AVAILABILITY AND IMPLEMENTATION Webserver, source code and datasets are available at www.ibi.vu.nl/programs/serendipwww/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qingzhen Hou
- Department of BioModeling, BioInformatics & BioProcesses, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Paul F G De Geest
- IBIVU - Center for Integrative Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - Christian J Griffioen
- IBIVU - Center for Integrative Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - Sanne Abeln
- IBIVU - Center for Integrative Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - Jaap Heringa
- IBIVU - Center for Integrative Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands.,AIMMS - Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - K Anton Feenstra
- IBIVU - Center for Integrative Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands.,AIMMS - Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
10
|
Upfold N, Ross C, Tastan Bishop Ö, Knox C. The In Silico Prediction of Hotspot Residues that Contribute to the Structural Stability of Subunit Interfaces of a Picornavirus Capsid. Viruses 2020; 12:v12040387. [PMID: 32244486 PMCID: PMC7232237 DOI: 10.3390/v12040387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
The assembly of picornavirus capsids proceeds through the stepwise oligomerization of capsid protein subunits and depends on interactions between critical residues known as hotspots. Few studies have described the identification of hotspot residues at the protein subunit interfaces of the picornavirus capsid, some of which could represent novel drug targets. Using a combination of accessible web servers for hotspot prediction, we performed a comprehensive bioinformatic analysis of the hotspot residues at the intraprotomer, interprotomer and interpentamer interfaces of the Theiler’s murine encephalomyelitis virus (TMEV) capsid. Significantly, many of the predicted hotspot residues were found to be conserved in representative viruses from different genera, suggesting that the molecular determinants of capsid assembly are conserved across the family. The analysis presented here can be applied to any icosahedral structure and provides a platform for in vitro mutagenesis studies to further investigate the significance of these hotspots in critical stages of the virus life cycle with a view to identify potential targets for antiviral drug design.
Collapse
Affiliation(s)
- Nicole Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
- Correspondence:
| | - Caroline Ross
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (C.R.); (Ö.T.B.)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (C.R.); (Ö.T.B.)
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
11
|
Bajpai AK, Davuluri S, Tiwary K, Narayanan S, Oguru S, Basavaraju K, Dayalan D, Thirumurugan K, Acharya KK. Systematic comparison of the protein-protein interaction databases from a user's perspective. J Biomed Inform 2020; 103:103380. [PMID: 32001390 DOI: 10.1016/j.jbi.2020.103380] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
|
12
|
Mohamed SK, Nounu A, Nováček V. Biological applications of knowledge graph embedding models. Brief Bioinform 2020; 22:1679-1693. [PMID: 32065227 DOI: 10.1093/bib/bbaa012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 01/04/2023] Open
Abstract
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
Collapse
Affiliation(s)
| | - Aayah Nounu
- Insight Centre for Data Analytics, NUI Galway, Galway, Ireland
| | - Vít Nováček
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Barreto CAV, Baptista SJ, Preto AJ, Matos-Filipe P, Mourão J, Melo R, Moreira I. Prediction and targeting of GPCR oligomer interfaces. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:105-149. [PMID: 31952684 DOI: 10.1016/bs.pmbts.2019.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GPCR oligomerization has emerged as a hot topic in the GPCR field in the last years. Receptors that are part of these oligomers can influence each other's function, although it is not yet entirely understood how these interactions work. The existence of such a highly complex network of interactions between GPCRs generates the possibility of alternative targets for new therapeutic approaches. However, challenges still exist in the characterization of these complexes, especially at the interface level. Different experimental approaches, such as FRET or BRET, are usually combined to study GPCR oligomer interactions. Computational methods have been applied as a useful tool for retrieving information from GPCR sequences and the few X-ray-resolved oligomeric structures that are accessible, as well as for predicting new and trustworthy GPCR oligomeric interfaces. Machine-learning (ML) approaches have recently helped with some hindrances of other methods. By joining and evaluating multiple structure-, sequence- and co-evolution-based features on the same algorithm, it is possible to dilute the issues of particular structures and residues that arise from the experimental methodology into all-encompassing algorithms capable of accurately predict GPCR-GPCR interfaces. All these methods used as a single or a combined approach provide useful information about GPCR oligomerization and its role in GPCR function and dynamics. Altogether, we present experimental, computational and machine-learning methods used to study oligomers interfaces, as well as strategies that have been used to target these dynamic complexes.
Collapse
Affiliation(s)
- Carlos A V Barreto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Salete J Baptista
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, LRS, Portugal
| | - António José Preto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro Matos-Filipe
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joana Mourão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rita Melo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, LRS, Portugal
| | - Irina Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Science and Technology Faculty, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Abstract
In this chapter we consider in silico modeling of diseases starting from some simple to some complex (and mathematical) concepts. Examples and applications of in silico modeling for some important categories of diseases (such as for cancers, infectious diseases, and neuronal diseases) are also given.
Collapse
|
15
|
Guzzi PH, Milenkovic T. Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin. Brief Bioinform 2019; 19:472-481. [PMID: 28062413 DOI: 10.1093/bib/bbw132] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Indexed: 12/23/2022] Open
Abstract
Analogous to genomic sequence alignment that allows for across-species transfer of biological knowledge between conserved sequence regions, biological network alignment can be used to guide the knowledge transfer between conserved regions of molecular networks of different species. Hence, biological network alignment can be used to redefine the traditional notion of a sequence-based homology to a new notion of network-based homology. Analogous to genomic sequence alignment, there exist local and global biological network alignments. Here, we survey prominent and recent computational approaches of each network alignment type and discuss their (dis)advantages. Then, as it was recently shown that the two approach types are complementary, in the sense that they capture different slices of cellular functioning, we discuss the need to reconcile the two network alignment types and present a recent first step in this direction. We conclude with some open research problems on this topic and comment on the usefulness of network alignment in other domains besides computational biology.
Collapse
Affiliation(s)
- Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University Magna Graecia, Catanzaro, 88100 Italy
| | - Tijana Milenkovic
- Department of Computer Science and Engineering, Interdisciplinary Center for Network Science and Applications (iCeNSA), ECK Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Shin WH, Christoffer CW, Kihara D. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 2017; 131:22-32. [PMID: 28802714 PMCID: PMC5683929 DOI: 10.1016/j.ymeth.2017.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
A core concept behind modern drug discovery is finding a small molecule that modulates a function of a target protein. This concept has been successfully applied since the mid-1970s. However, the efficiency of drug discovery is decreasing because the druggable target space in the human proteome is limited. Recently, protein-protein interaction (PPI) has been identified asan emerging target space for drug discovery. PPI plays a pivotal role in biological pathways including diseases. Current human interactome research suggests that the number of PPIs is between 130,000 and 650,000, and only a small number of them have been targeted as drug targets. For traditional drug targets, in silico structure-based methods have been successful in many cases. However, their performance suffers on PPI interfaces because PPI interfaces are different in five major aspects: From a geometric standpoint, they have relatively large interface regions, flat geometry, and the interface surface shape tends to fluctuate upon binding. Also, their interactions are dominated by hydrophobic atoms, which is different from traditional binding-pocket-targeted drugs. Finally, PPI targets usually lack natural molecules that bind to the target PPI interface. Here, we first summarize characteristics of PPI interfaces and their known binders. Then, we will review existing in silico structure-based approaches for discovering small molecules that bind to PPI interfaces.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Computational Resources for Predicting Protein-Protein Interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:251-275. [PMID: 29412998 DOI: 10.1016/bs.apcsb.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins are the essential building blocks and functional components of a cell. They account for the vital functions of an organism. Proteins interact with each other and form protein interaction networks. These protein interactions play a major role in all the biological processes and pathways. The previous methods of predicting protein interactions were experimental which focused on a small set of proteins or a particular protein. However, these experimental approaches are low-throughput as they are time-consuming and require a significant amount of human effort. This led to the development of computational techniques that uses high-throughput experimental data for analyzing protein-protein interactions. The main purpose of this review is to provide an overview on the computational advancements and tools for the prediction of protein interactions. The major databases for the deposition of these interactions are also described. The advantages, as well as the specific limitations of these tools, are highlighted which will shed light on the computational aspects that can help the biologist and researchers in their research.
Collapse
|
18
|
Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:3-13. [PMID: 27913149 DOI: 10.1016/j.pbiomolbio.2016.10.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
|
19
|
Cafarelli TM, Desbuleux A, Wang Y, Choi SG, De Ridder D, Vidal M. Mapping, modeling, and characterization of protein-protein interactions on a proteomic scale. Curr Opin Struct Biol 2017; 44:201-210. [PMID: 28575754 DOI: 10.1016/j.sbi.2017.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022]
Abstract
Proteins effect a number of biological functions, from cellular signaling, organization, mobility, and transport to catalyzing biochemical reactions and coordinating an immune response. These varied functions are often dependent upon macromolecular interactions, particularly with other proteins. Small-scale studies in the scientific literature report protein-protein interactions (PPIs), but slowly and with bias towards well-studied proteins. In an era where genomic sequence is readily available, deducing genotype-phenotype relationships requires an understanding of protein connectivity at proteome-scale. A proteome-scale map of the protein-protein interaction network provides a global view of cellular organization and function. Here, we discuss a summary of methods for building proteome-scale interactome maps and the current status and implications of mapping achievements. Not only do interactome maps serve as a reference, detailing global cellular function and organization patterns, but they can also reveal the mechanisms altered by disease alleles, highlight the patterns of interaction rewiring across evolution, and help pinpoint biologically and therapeutically relevant proteins. Despite the considerable strides made in proteome-wide mapping, several technical challenges persist. Therefore, future considerations that impact current mapping efforts are also discussed.
Collapse
Affiliation(s)
- T M Cafarelli
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - A Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; GIGA-R, University of Liège, Liège, Belgium
| | - Y Wang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - S G Choi
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - D De Ridder
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - M Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Wisitponchai T, Shoombuatong W, Lee VS, Kitidee K, Tayapiwatana C. AnkPlex: algorithmic structure for refinement of near-native ankyrin-protein docking. BMC Bioinformatics 2017; 18:220. [PMID: 28424069 PMCID: PMC5395911 DOI: 10.1186/s12859-017-1628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Computational analysis of protein-protein interaction provided the crucial information to increase the binding affinity without a change in basic conformation. Several docking programs were used to predict the near-native poses of the protein-protein complex in 10 top-rankings. The universal criteria for discriminating the near-native pose are not available since there are several classes of recognition protein. Currently, the explicit criteria for identifying the near-native pose of ankyrin-protein complexes (APKs) have not been reported yet. RESULTS In this study, we established an ensemble computational model for discriminating the near-native docking pose of APKs named "AnkPlex". A dataset of APKs was generated from seven X-ray APKs, which consisted of 3 internal domains, using the reliable docking tool ZDOCK. The dataset was composed of 669 and 44,334 near-native and non-near-native poses, respectively, and it was used to generate eleven informative features. Subsequently, a re-scoring rank was generated by AnkPlex using a combination of a decision tree algorithm and logistic regression. AnkPlex achieved superior efficiency with ≥1 near-native complexes in the 10 top-rankings for nine X-ray complexes compared to ZDOCK, which only obtained six X-ray complexes. In addition, feature analysis demonstrated that the van der Waals feature was the dominant near-native pose out of the potential ankyrin-protein docking poses. CONCLUSION The AnkPlex model achieved a success at predicting near-native docking poses and led to the discovery of informative characteristics that could further improve our understanding of the ankyrin-protein complex. Our computational study could be useful for predicting the near-native poses of binding proteins and desired targets, especially for ankyrin-protein complexes. The AnkPlex web server is freely accessible at http://ankplex.ams.cmu.ac.th .
Collapse
Affiliation(s)
- Tanchanok Wisitponchai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Vannajan Sanghiran Lee
- Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok, 10400, Thailand.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kuntida Kitidee
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
21
|
Murakami Y, Tripathi LP, Prathipati P, Mizuguchi K. Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery. Curr Opin Struct Biol 2017; 44:134-142. [PMID: 28364585 DOI: 10.1016/j.sbi.2017.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/05/2017] [Accepted: 02/23/2017] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions (PPIs) are vital to maintaining cellular homeostasis. Several PPI dysregulations have been implicated in the etiology of various diseases and hence PPIs have emerged as promising targets for drug discovery. Surface residues and hotspot residues at the interface of PPIs form the core regions, which play a key role in modulating cellular processes such as signal transduction and are used as starting points for drug design. In this review, we briefly discuss how PPI networks (PPINs) inferred from experimentally characterized PPI data have been utilized for knowledge discovery and how in silico approaches to PPI characterization can contribute to PPIN-based biological research. Next, we describe the principles of in silico PPI prediction and survey the existing PPI and PPI site prediction servers that are useful for drug discovery. Finally, we discuss the potential of in silico PPI prediction in drug discovery.
Collapse
Affiliation(s)
- Yoichi Murakami
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Lokesh P Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Philip Prathipati
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
22
|
|
23
|
Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms. CURRENT OPINION IN TOXICOLOGY 2017; 2:42-49. [PMID: 28497129 DOI: 10.1016/j.cotox.2017.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Molecular modeling has given important contributions to elucidation of the main stages in the AhR signal transduction pathway. Despite the lack of experimentally determined structures of the AhR functional domains, information derived from homologous systems has been exploited for modeling their structure and interactions. Homology models of the AhR PASB domain have provided information on the binding cavity and contributed to elucidate species-specific differences in ligand binding. Molecular Docking simulations of the ligand binding process have given insights into differences in binding of diverse agonists, antagonists, and selective AhR modulators, and their application to virtual screening of large databases of compounds have allowed identification of novel AhR ligands. Recently available structural information on protein-protein and protein-DNA complexes of other bHLH-PAS systems has opened the way for modeling the AhR:ARNT dimer structure and investigating the mechanisms of AhR transformation and DNA binding. Future research directions should include simulation of the protein dynamics to obtain a more reliable description of intermolecular interactions involved in signal transmission.
Collapse
|
24
|
Computational Approaches for Predicting Binding Partners, Interface Residues, and Binding Affinity of Protein-Protein Complexes. Methods Mol Biol 2017; 1484:237-253. [PMID: 27787830 DOI: 10.1007/978-1-4939-6406-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studying protein-protein interactions leads to a better understanding of the underlying principles of several biological pathways. Cost and labor-intensive experimental techniques suggest the need for computational methods to complement them. Several such state-of-the-art methods have been reported for analyzing diverse aspects such as predicting binding partners, interface residues, and binding affinity for protein-protein complexes with reliable performance. However, there are specific drawbacks for different methods that indicate the need for their improvement. This review highlights various available computational algorithms for analyzing diverse aspects of protein-protein interactions and endorses the necessity for developing new robust methods for gaining deep insights about protein-protein interactions.
Collapse
|
25
|
Chen J, Wang B, Regan L, Gerstein M. Intensification: A Resource for Amplifying Population-Genetic Signals with Protein Repeats. J Mol Biol 2016; 429:435-445. [PMID: 27939289 DOI: 10.1016/j.jmb.2016.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/16/2016] [Accepted: 12/03/2016] [Indexed: 11/16/2022]
Abstract
Large-scale genome sequencing holds great promise for the interpretation of protein structures through the discovery of many, rare functional variants in the human population. However, because protein-coding regions are under high selective constraints, these variants occur at low frequencies, such that there is often insufficient statistics for downstream calculations. To address this problem, we develop the Intensification approach, which uses the modular structure of repeat protein domains to amplify signals of selection from population genetics and traditional interspecies conservation. In particular, we are able to aggregate variants at the codon level to identify important positions in repeat domains that show strong conservation signals. This allows us to compare conservation over different evolutionary timescales. It also enables us to visualize population-genetic measures on protein structures. We make available the Intensification results as an online resource (http://intensification.gersteinlab.org) and illustrate the approach through a case study on the tetratricopeptide repeat.
Collapse
Affiliation(s)
- Jieming Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Bo Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Lynne Regan
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Siegert TR, Bird MJ, Makwana KM, Kritzer JA. Analysis of Loops that Mediate Protein-Protein Interactions and Translation into Submicromolar Inhibitors. J Am Chem Soc 2016; 138:12876-12884. [PMID: 27611902 DOI: 10.1021/jacs.6b05656] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effective strategies for mimicking α-helix and β-strand epitopes have been developed, producing valuable inhibitors for some classes of protein-protein interactions (PPIs). However, there are no general strategies for translating loop epitopes into useful PPI inhibitors. In this work, we use the LoopFinder program to identify diverse sets of "hot loops," which are loop epitopes that mediate PPIs. These include loops that are well-suited to mimicry with macrocyclic compounds, and loops that are most similar to variable loops on antibodies and ankyrin repeat proteins. We present data-driven criteria for scoring loop-mediated PPIs, uncovering a trove of potentially druggable interactions. We also use unbiased clustering to identify common structures among the hot loops. To translate these insights into real-world inhibitors, we describe a robust, diversity-oriented strategy for the rapid production and evaluation of cyclized loops. This method is applied to a computationally identified loop in the PPI between stonin2 and Eps15, producing submicromolar inhibitors. The most potent inhibitor is well-structured in water and successfully mimics the native epitope. Overall, these computational and experimental strategies provide new opportunities to design inhibitors for an otherwise intractable set of PPIs.
Collapse
Affiliation(s)
- Timothy R Siegert
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Michael J Bird
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Kamlesh M Makwana
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
27
|
Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 2016; 32:3676-3678. [PMID: 27503228 DOI: 10.1093/bioinformatics/btw514] [Citation(s) in RCA: 638] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/17/2016] [Accepted: 07/30/2016] [Indexed: 11/13/2022] Open
Abstract
Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given protein-protein complex. Here we present PROtein binDIng enerGY prediction (PRODIGY), a web server to predict the binding affinity of protein-protein complexes from their 3D structure. The PRODIGY server implements our simple but highly effective predictive model based on intermolecular contacts and properties derived from non-interface surface. AVAILABILITY AND IMPLEMENTATION PRODIGY is freely available at: http://milou.science.uu.nl/services/PRODIGY CONTACT: [email protected], [email protected].
Collapse
Affiliation(s)
- Li C Xue
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Department of Chemistry, Utrecht University, 3584CH Utrecht, The Netherlands
| | - João Pglm Rodrigues
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Department of Chemistry, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Panagiotis L Kastritis
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Department of Chemistry, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Alexandre Mjj Bonvin
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Department of Chemistry, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Anna Vangone
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Department of Chemistry, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
28
|
Ens-PPI: A Novel Ensemble Classifier for Predicting the Interactions of Proteins Using Autocovariance Transformation from PSSM. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4563524. [PMID: 27437399 PMCID: PMC4942601 DOI: 10.1155/2016/4563524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/08/2016] [Indexed: 11/17/2022]
Abstract
Protein-Protein Interactions (PPIs) play vital roles in most biological activities. Although the development of high-throughput biological technologies has generated considerable PPI data for various organisms, many problems are still far from being solved. A number of computational methods based on machine learning have been developed to facilitate the identification of novel PPIs. In this study, a novel predictor was designed using the Rotation Forest (RF) algorithm combined with Autocovariance (AC) features extracted from the Position-Specific Scoring Matrix (PSSM). More specifically, the PSSMs are generated using the information of protein amino acids sequence. Then, an effective sequence-based features representation, Autocovariance, is employed to extract features from PSSMs. Finally, the RF model is used as a classifier to distinguish between the interacting and noninteracting protein pairs. The proposed method achieves promising prediction performance when performed on the PPIs of Yeast, H. pylori, and independent datasets. The good results show that the proposed model is suitable for PPIs prediction and could also provide a useful supplementary tool for solving other bioinformatics problems.
Collapse
|
29
|
Hou Q, Lensink MF, Heringa J, Feenstra KA. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys. PLoS One 2016; 11:e0155251. [PMID: 27166787 PMCID: PMC4864233 DOI: 10.1371/journal.pone.0155251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/26/2016] [Indexed: 01/12/2023] Open
Abstract
Large-scale identification of native binding orientations is crucial for understanding the role of protein-protein interactions in their biological context. Measuring binding free energy is the method of choice to estimate binding strength and reveal the relevance of particular conformations in which proteins interact. In a recent study, we successfully applied coarse-grained molecular dynamics simulations to measure binding free energy for two protein complexes with similar accuracy to full-atomistic simulation, but 500-fold less time consuming. Here, we investigate the efficacy of this approach as a scoring method to identify stable binding conformations from thousands of docking decoys produced by protein docking programs. To test our method, we first applied it to calculate binding free energies of all protein conformations in a CAPRI (Critical Assessment of PRedicted Interactions) benchmark dataset, which included over 19000 protein docking solutions for 15 benchmark targets. Based on the binding free energies, we ranked all docking solutions to select the near-native binding modes under the assumption that the native-solutions have lowest binding free energies. In our top 100 ranked structures, for the ‘easy’ targets that have many near-native conformations, we obtain a strong enrichment of acceptable or better quality structures; for the ‘hard’ targets without near-native decoys, our method is still able to retain structures which have native binding contacts. Moreover, in our top 10 selections, CLUB-MARTINI shows a comparable performance when compared with other state-of-the-art docking scoring functions. As a proof of concept, CLUB-MARTINI performs remarkably well for many targets and is able to pinpoint near-native binding modes in the top selections. To the best of our knowledge, this is the first time interaction free energy calculated from MD simulations have been used to rank docking solutions at a large scale.
Collapse
Affiliation(s)
- Qingzhen Hou
- Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
| | - Marc F. Lensink
- University Lille, CNRS, UMR8576 UGSF - Institute for Structural and Functional Glycobiology, F-59000, Lille, France
| | - Jaap Heringa
- Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
| | - K. Anton Feenstra
- Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Esmaielbeiki R, Krawczyk K, Knapp B, Nebel JC, Deane CM. Progress and challenges in predicting protein interfaces. Brief Bioinform 2016; 17:117-31. [PMID: 25971595 PMCID: PMC4719070 DOI: 10.1093/bib/bbv027] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Indexed: 12/31/2022] Open
Abstract
The majority of biological processes are mediated via protein-protein interactions. Determination of residues participating in such interactions improves our understanding of molecular mechanisms and facilitates the development of therapeutics. Experimental approaches to identifying interacting residues, such as mutagenesis, are costly and time-consuming and thus, computational methods for this purpose could streamline conventional pipelines. Here we review the field of computational protein interface prediction. We make a distinction between methods which address proteins in general and those targeted at antibodies, owing to the radically different binding mechanism of antibodies. We organize the multitude of currently available methods hierarchically based on required input and prediction principles to provide an overview of the field.
Collapse
|
31
|
Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW. Protein docking using case-based reasoning. Proteins 2015; 81:2150-8. [PMID: 24123156 DOI: 10.1002/prot.24433] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein docking algorithms aim to calculate the three-dimensional (3D) structure of a protein complex starting from its unbound components. Although ab initio docking algorithms are improving, there is a growing need to use homology modeling techniques to exploit the rapidly increasing volumes of structural information that now exist. However, most current homology modeling approaches involve finding a pair of complete single-chain structures in a homologous protein complex to use as a 3D template, despite the fact that protein complexes are often formed from one or more domain-domain interactions (DDIs). To model 3D protein complexes by domain-domain homology, we have developed a case-based reasoning approach called KBDOCK which systematically identifies and reuses domain family binding sites from our database of nonredundant DDIs. When tested on 54 protein complexes from the Protein Docking Benchmark, our approach provides a near-perfect way to model single-domain protein complexes when full-homology templates are available, and it extends our ability to model more difficult cases when only partial or incomplete templates exist. These promising early results highlight the need for a new and diverse docking benchmark set, specifically designed to assess homology docking approaches.
Collapse
Affiliation(s)
- Anisah W Ghoorah
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
32
|
Hou Q, Dutilh BE, Huynen MA, Heringa J, Feenstra KA. Sequence specificity between interacting and non-interacting homologs identifies interface residues--a homodimer and monomer use case. BMC Bioinformatics 2015; 16:325. [PMID: 26449222 PMCID: PMC4599308 DOI: 10.1186/s12859-015-0758-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022] Open
Abstract
Background Protein families participating in protein-protein interactions may contain sub-families that have different binding characteristics, ranging from right binding to showing no interaction at all. Composition differences at the sequence level in these sub-families are often decisive to their differential functional interaction. Methods to predict interface sites from protein sequences typically exploit conservation as a signal. Here, instead, we provide proof of concept that the sequence specificity between interacting versus non-interacting groups can be exploited to recognise interaction sites. Results We collected homodimeric and monomeric proteins and formed homologous groups, each having an interacting (homodimer) subgroup and a non-interacting (monomer) subgroup. We then compiled multiple sequence alignments of the proteins in the homologous groups and identified compositional differences between the homodimeric and monomeric subgroups for each of the alignment positions. Our results show that this specificity signal distinguishes interface and other surface residues with 40.9 % recall and up to 25.1 % precision. Conclusions To our best knowledge, this is the first large scale study that exploits sequence specificity between interacting and non-interacting homologs to predict interaction sites from sequence information only. The performance obtained indicates that this signal contains valuable information to identify protein-protein interaction sites. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0758-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingzhen Hou
- Center for Integrative Bioinformatics VU (IBIVU), Vrije University Amsterdam, De Boelelaan 1081A, 1081 HV, Amsterdam, The Netherlands.
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands. .,Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| | - Jaap Heringa
- Center for Integrative Bioinformatics VU (IBIVU), Vrije University Amsterdam, De Boelelaan 1081A, 1081 HV, Amsterdam, The Netherlands.
| | - K Anton Feenstra
- Center for Integrative Bioinformatics VU (IBIVU), Vrije University Amsterdam, De Boelelaan 1081A, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Jeanquartier F, Jean-Quartier C, Holzinger A. Integrated web visualizations for protein-protein interaction databases. BMC Bioinformatics 2015; 16:195. [PMID: 26077899 PMCID: PMC4466863 DOI: 10.1186/s12859-015-0615-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/15/2015] [Indexed: 12/27/2022] Open
Abstract
Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. Results We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Conclusions Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
Collapse
Affiliation(s)
- Fleur Jeanquartier
- Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, Graz, 8036, Austria.
| | - Claire Jean-Quartier
- Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, Graz, 8036, Austria.
| | - Andreas Holzinger
- Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, Graz, 8036, Austria. .,Institute for Information Systems & Computer Media Graz University of Technology, Inffeldgasse 16c, Graz, 8010, Austria.
| |
Collapse
|
34
|
Li M, Lu Y, Wang J, Wu FX, Pan Y. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:372-383. [PMID: 26357224 DOI: 10.1109/tcbb.2014.2361350] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Essential proteins are indispensable for cellular life. It is of great significance to identify essential proteins that can help us understand the minimal requirements for cellular life and is also very important for drug design. However, identification of essential proteins based on experimental approaches are typically time-consuming and expensive. With the development of high-throughput technology in the post-genomic era, more and more protein-protein interaction data can be obtained, which make it possible to study essential proteins from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. Most of these topology based essential protein discovery methods were to use network centralities. In this paper, we investigate the essential proteins' topological characters from a completely new perspective. To our knowledge it is the first time that topology potential is used to identify essential proteins from a protein-protein interaction (PPI) network. The basic idea is that each protein in the network can be viewed as a material particle which creates a potential field around itself and the interaction of all proteins forms a topological field over the network. By defining and computing the value of each protein's topology potential, we can obtain a more precise ranking which reflects the importance of proteins from the PPI network. The experimental results show that topology potential-based methods TP and TP-NC outperform traditional topology measures: degree centrality (DC), betweenness centrality (BC), closeness centrality (CC), subgraph centrality (SC), eigenvector centrality (EC), information centrality (IC), and network centrality (NC) for predicting essential proteins. In addition, these centrality measures are improved on their performance for identifying essential proteins in biological network when controlled by topology potential.
Collapse
|
35
|
Aumentado-Armstrong TT, Istrate B, Murgita RA. Algorithmic approaches to protein-protein interaction site prediction. Algorithms Mol Biol 2015; 10:7. [PMID: 25713596 PMCID: PMC4338852 DOI: 10.1186/s13015-015-0033-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 01/07/2015] [Indexed: 12/19/2022] Open
Abstract
Interaction sites on protein surfaces mediate virtually all biological activities, and their identification holds promise for disease treatment and drug design. Novel algorithmic approaches for the prediction of these sites have been produced at a rapid rate, and the field has seen significant advancement over the past decade. However, the most current methods have not yet been reviewed in a systematic and comprehensive fashion. Herein, we describe the intricacies of the biological theory, datasets, and features required for modern protein-protein interaction site (PPIS) prediction, and present an integrative analysis of the state-of-the-art algorithms and their performance. First, the major sources of data used by predictors are reviewed, including training sets, evaluation sets, and methods for their procurement. Then, the features employed and their importance in the biological characterization of PPISs are explored. This is followed by a discussion of the methodologies adopted in contemporary prediction programs, as well as their relative performance on the datasets most recently used for evaluation. In addition, the potential utility that PPIS identification holds for rational drug design, hotspot prediction, and computational molecular docking is described. Finally, an analysis of the most promising areas for future development of the field is presented.
Collapse
|
36
|
Flexibility and small pockets at protein-protein interfaces: New insights into druggability. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:2-9. [PMID: 25662442 PMCID: PMC4726663 DOI: 10.1016/j.pbiomolbio.2015.01.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/06/2015] [Accepted: 01/28/2015] [Indexed: 01/04/2023]
Abstract
The transient assembly of multiprotein complexes mediates many aspects of cell regulation and signalling in living organisms. Modulation of the formation of these complexes through targeting protein-protein interfaces can offer greater selectivity than the inhibition of protein kinases, proteases or other post-translational regulatory enzymes using substrate, co-factor or transition state mimetics. However, capitalising on protein-protein interaction interfaces as drug targets has been hindered by the nature of interfaces that tend to offer binding sites lacking the well-defined large cavities of classical drug targets. In this review we posit that interfaces formed by concerted folding and binding (disorder-to-order transitions on binding) of one partner and other examples of interfaces where a protein partner is bound through a continuous epitope from a surface-exposed helix, flexible loop or chain extension may be more tractable for the development of "orthosteric", competitive chemical modulators; these interfaces tend to offer small-volume but deep pockets and/or larger grooves that may be bound tightly by small chemical entities. We discuss examples of such protein-protein interaction interfaces for which successful chemical modulators are being developed.
Collapse
|
37
|
Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Future Med Chem 2015; 6:903-21. [PMID: 24962282 DOI: 10.4155/fmc.14.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the proteins that is found in a diverse range of eukaryotic protein-protein interactions is the adaptor protein 14-3-3. As 14-3-3 is a hub protein with very diverse interactions, it is a good model to study various protein-protein interactions. A wide range of classes of molecules, peptides, small molecules or natural products, has been used to modify the protein interactions, providing both stabilization or inhibition of the interactions of 14-3-3 with its binding partners. The first protein crystal structures were solved in 1995 and gave molecular insights for further research. The plant analog of 14-3-3 binds to a plant plasma membrane H(+)-ATPase and this protein complex is stabilized by the fungal phytotoxin fusicoccin A. The knowledge gained from the process in plants was transferred to and applied in human models to find stabilizers or inhibitors of 14-3-3 interaction in human cellular pathways.
Collapse
|
38
|
Use B-factor related features for accurate classification between protein binding interfaces and crystal packing contacts. BMC Bioinformatics 2014; 15 Suppl 16:S3. [PMID: 25522196 PMCID: PMC4290652 DOI: 10.1186/1471-2105-15-s16-s3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Distinction between true protein interactions and crystal packing contacts is important for structural bioinformatics studies to respond to the need of accurate classification of the rapidly increasing protein structures. There are many unannotated crystal contacts and there also exist false annotations in this rapidly expanding volume of data. Previous tools have been proposed to address this problem. However, challenging issues still remain, such as low performance when the training and test data contain mixed interfaces having diverse sizes of contact areas. Methods and results B factor is a measure to quantify the vibrational motion of an atom, a more relevant feature than interface size to characterize protein binding. We propose to use three features related to B factor for the classification between biological interfaces and crystal packing contacts. The first feature is the sum of the normalized B factors of the interfacial atoms in the contact area, the second is the average of the interfacial B factor per residue in the chain, and the third is the average number of interfacial atoms with a negative normalized B factor per residue in the chain. We investigate the distribution properties of these basic features and a compound feature on four datasets of biological binding and crystal packing, and on a protein binding-only dataset with known binding affinity. We also compare the cross-dataset classification performance of these features with existing methods and with a widely-used and the most effective feature interface area. The results demonstrate that our features outperform the interface area approach and the existing prediction methods remarkably for many tests on all of these datasets. Conclusions The proposed B factor related features are more effective than interface area to distinguish crystal packing from biological binding interfaces. Our computational methods have a potential for large-scale and accurate identification of biological interactions from the experimentally determined structural data stored at PDB which may have diverse interface sizes.
Collapse
|
39
|
Mirceva G, Kulakov A. Improvement of protein binding sites prediction by selecting amino acid residues' features. J Struct Biol 2014; 189:9-19. [PMID: 25478969 DOI: 10.1016/j.jsb.2014.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/30/2014] [Accepted: 11/23/2014] [Indexed: 11/17/2022]
Abstract
One of the main focuses of bioinformatics community is the study of the relationship between the structure of the protein molecules and their functions. In the literature, there are various methods that consider different protein-derived information for predicting protein functions. In our research, we focus on predicting the protein binding sites, which could be used to functionally annotate the protein structures. In this paper we consider a set of sixteen amino acid residues' features, and by applying various feature selection techniques we estimate their significance. Although the number of features in our case is not high, we perform feature selection in order to improve the prediction power and time complexity of the prediction models. The results show that by applying proper feature selection technique, the predictive performance of the classification algorithms is improved, i.e., by considering the most relevant features we induce more accurate models than if we consider the entire set of features. Furthermore, the model complexity, as well as the training and testing times are decreased by performing feature selection. We also compare our approach with several existing methods for protein binding sites prediction. The results demonstrate that the existing methods considered in this research are specific and applicable to the group of proteins for which the model was developed, while our approach is more generic and can be applied to a wider class of proteins.
Collapse
Affiliation(s)
- Georgina Mirceva
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia.
| | - Andrea Kulakov
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia.
| |
Collapse
|
40
|
Moal IH, Jiménez-García B, Fernández-Recio J. CCharPPI web server: computational characterization of protein-protein interactions from structure. Bioinformatics 2014; 31:123-5. [PMID: 25183488 DOI: 10.1093/bioinformatics/btu594] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY The atomic structures of protein-protein interactions are central to understanding their role in biological systems, and a wide variety of biophysical functions and potentials have been developed for their characterization and the construction of predictive models. These tools are scattered across a multitude of stand-alone programs, and are often available only as model parameters requiring reimplementation. This acts as a significant barrier to their widespread adoption. CCharPPI integrates many of these tools into a single web server. It calculates up to 108 parameters, including models of electrostatics, desolvation and hydrogen bonding, as well as interface packing and complementarity scores, empirical potentials at various resolutions, docking potentials and composite scoring functions. AVAILABILITY AND IMPLEMENTATION The server does not require registration by the user and is freely available for non-commercial academic use at http://life.bsc.es/pid/ccharppi.
Collapse
Affiliation(s)
- Iain H Moal
- Joint BSC-IRB Research Programme in Computational Biology, Department of Life Sciences, Barcelona Supercomputing Center, C/Jordi Girona 29, 08034 Barcelona, Spain
| | - Brian Jiménez-García
- Joint BSC-IRB Research Programme in Computational Biology, Department of Life Sciences, Barcelona Supercomputing Center, C/Jordi Girona 29, 08034 Barcelona, Spain
| | - Juan Fernández-Recio
- Joint BSC-IRB Research Programme in Computational Biology, Department of Life Sciences, Barcelona Supercomputing Center, C/Jordi Girona 29, 08034 Barcelona, Spain
| |
Collapse
|
41
|
Jakobi S, Nguyen TXP, Debaene F, Metz A, Sanglier-Cianférani S, Reuter K, Klebe G. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme. Proteins 2014; 82:2713-32. [DOI: 10.1002/prot.24637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/24/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Stephan Jakobi
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Tran Xuan Phong Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - François Debaene
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg; CNRS UMR7178; 25 rue Becquerel 67087 Strasbourg France
| | - Alexander Metz
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg; CNRS UMR7178; 25 rue Becquerel 67087 Strasbourg France
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| |
Collapse
|
42
|
Villoutreix BO, Kuenemann MA, Poyet JL, Bruzzoni-Giovanelli H, Labbé C, Lagorce D, Sperandio O, Miteva MA. Drug-Like Protein-Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology. Mol Inform 2014; 33:414-437. [PMID: 25254076 PMCID: PMC4160817 DOI: 10.1002/minf.201400040] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Abstract
[Formula: see text] Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein-protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow. However, this last decade, the scientific community has challenged the dogma and became more enthusiastic about the modulation of PPIs with small drug-like molecules. In fact, several success stories were reported both, at the preclinical and clinical stages. In this review article, written for the 2014 International Summer School in Chemoinformatics (Strasbourg, France), we discuss in silico tools (essentially post 2012) and databases that can assist the design of low molecular weight PPI modulators (these tools can be found at www.vls3d.com). We first introduce the field of protein-protein interaction research, discuss key challenges and comment recently reported in silico packages, protocols and databases dedicated to PPIs. Then, we illustrate how in silico methods can be used and combined with experimental work to identify PPI modulators.
Collapse
Affiliation(s)
- Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Melaine A Kuenemann
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - Jean-Luc Poyet
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- IUH, Hôpital Saint-LouisParis, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Heriberto Bruzzoni-Giovanelli
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CIC, Clinical investigation center, Hôpital Saint-LouisParis, France
| | - Céline Labbé
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - David Lagorce
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - Olivier Sperandio
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Maria A Miteva
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| |
Collapse
|
43
|
Intermolecular β-strand networks avoid hub residues and favor low interconnectedness: a potential protection mechanism against chain dissociation upon mutation. PLoS One 2014; 9:e94745. [PMID: 24733378 PMCID: PMC3986249 DOI: 10.1371/journal.pone.0094745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/19/2014] [Indexed: 01/11/2023] Open
Abstract
Altogether few protein oligomers undergo a conformational transition to a state that impairs their function and leads to diseases. But when it happens, the consequences are not harmless and the so-called conformational diseases pose serious public health problems. Notorious examples are the Alzheimer's disease and some cancers associated with a conformational change of the amyloid precursor protein (APP) and of the p53 tumor suppressor, respectively. The transition is linked with the propensity of β-strands to aggregate into amyloid fibers. Nevertheless, a huge number of protein oligomers associate chains via β-strand interactions (intermolecular β-strand interface) without ever evolving into fibers. We analyzed the layout of 1048 intermolecular β-strand interfaces looking for features that could provide the β-strands resistance to conformational transitions. The interfaces were reconstructed as networks with the residues as the nodes and the interactions between residues as the links. The networks followed an exponential decay degree distribution, implying an absence of hubs and nodes with few links. Such layout provides robustness to changes. Few links per nodes do not restrict the choices of amino acids capable of making an interface and maintain high sequence plasticity. Few links reduce the “bonding” cost of making an interface. Finally, few links moderate the vulnerability to amino acid mutation because it entails limited communication between the nodes. This confines the effects of a mutation to few residues instead of propagating them to many residues via hubs. We propose that intermolecular β-strand interfaces are organized in networks that tolerate amino acid mutation to avoid chain dissociation, the first step towards fiber formation. This is tested by looking at the intermolecular β-strand network of the p53 tetramer.
Collapse
|
44
|
Saccà C, Teso S, Diligenti M, Passerini A. Improved multi-level protein-protein interaction prediction with semantic-based regularization. BMC Bioinformatics 2014; 15:103. [PMID: 24725682 PMCID: PMC4004462 DOI: 10.1186/1471-2105-15-103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 03/03/2014] [Indexed: 11/24/2022] Open
Abstract
Background Protein–protein interactions can be seen as a hierarchical process occurring at three related levels: proteins bind by means of specific domains, which in turn form interfaces through patches of residues. Detailed knowledge about which domains and residues are involved in a given interaction has extensive applications to biology, including better understanding of the binding process and more efficient drug/enzyme design. Alas, most current interaction prediction methods do not identify which parts of a protein actually instantiate an interaction. Furthermore, they also fail to leverage the hierarchical nature of the problem, ignoring otherwise useful information available at the lower levels; when they do, they do not generate predictions that are guaranteed to be consistent between levels. Results Inspired by earlier ideas of Yip et al. (BMC Bioinformatics 10:241, 2009), in the present paper we view the problem as a multi-level learning task, with one task per level (proteins, domains and residues), and propose a machine learning method that collectively infers the binding state of all object pairs. Our method is based on Semantic Based Regularization (SBR), a flexible and theoretically sound machine learning framework that uses First Order Logic constraints to tie the learning tasks together. We introduce a set of biologically motivated rules that enforce consistent predictions between the hierarchy levels. Conclusions We study the empirical performance of our method using a standard validation procedure, and compare its performance against the only other existing multi-level prediction technique. We present results showing that our method substantially outperforms the competitor in several experimental settings, indicating that exploiting the hierarchical nature of the problem can lead to better predictions. In addition, our method is also guaranteed to produce interactions that are consistent with respect to the protein–domain–residue hierarchy.
Collapse
Affiliation(s)
| | | | | | - Andrea Passerini
- Dipartimento di Ingegneria e Scienza dell'Informazione, University of Trento, Trento, Italy.
| |
Collapse
|
45
|
Xue LC, Jordan RA, EL-Manzalawy Y, Dobbs D, Honavar V. DockRank: ranking docked conformations using partner-specific sequence homology-based protein interface prediction. Proteins 2014; 82:250-67. [PMID: 23873600 PMCID: PMC4417613 DOI: 10.1002/prot.24370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 06/27/2013] [Accepted: 07/09/2013] [Indexed: 12/11/2022]
Abstract
Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. DockRank uses interface residues predicted by partner-specific sequence homology-based protein-protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/.
Collapse
Affiliation(s)
- Li C. Xue
- Bioinformatics and Computational Biology program, Iowa State University, Ames, Iowa
| | - Rafael A. Jordan
- Department of Computer Science, Iowa State University, Ames, Iowa
- Department of Systems and Computer Engineering, Pontificia Universidad Javeriana, Cali, Colombia
| | - Yasser EL-Manzalawy
- Department of Computer Science, Iowa State University, Ames, Iowa
- Department of Systems and Computer Engineering, Al-Azhar University, Cairo, Egypt
| | - Drena Dobbs
- Bioinformatics and Computational Biology program, Iowa State University, Ames, Iowa
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa
| | - Vasant Honavar
- Bioinformatics and Computational Biology program, Iowa State University, Ames, Iowa
- Department of Computer Science, Iowa State University, Ames, Iowa
| |
Collapse
|
46
|
Zahiri J, Bozorgmehr JH, Masoudi-Nejad A. Computational Prediction of Protein-Protein Interaction Networks: Algo-rithms and Resources. Curr Genomics 2014; 14:397-414. [PMID: 24396273 PMCID: PMC3861891 DOI: 10.2174/1389202911314060004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 08/26/2013] [Indexed: 01/15/2023] Open
Abstract
Protein interactions play an important role in the discovery of protein functions and pathways in biological processes. This is especially true in case of the diseases caused by the loss of specific protein-protein interactions in the organism. The accuracy of experimental results in finding protein-protein interactions, however, is rather dubious and high throughput experimental results have shown both high false positive beside false negative information for protein interaction. Computational methods have attracted tremendous attention among biologists because of the ability to predict protein-protein interactions and validate the obtained experimental results. In this study, we have reviewed several computational methods for protein-protein interaction prediction as well as describing major databases, which store both predicted and detected protein-protein interactions, and the tools used for analyzing protein interaction networks and improving protein-protein interaction reliability.
Collapse
Affiliation(s)
- Javad Zahiri
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - Joseph Hannon Bozorgmehr
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Iran
| |
Collapse
|
47
|
|
48
|
Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW. KBDOCK 2013: a spatial classification of 3D protein domain family interactions. Nucleic Acids Res 2013; 42:D389-95. [PMID: 24271397 PMCID: PMC3964971 DOI: 10.1093/nar/gkt1199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Comparing, classifying and modelling protein structural interactions can enrich our understanding of many biomolecular processes. This contribution describes Kbdock (http://kbdock.loria.fr/), a database system that combines the Pfam domain classification with coordinate data from the PDB to analyse and model 3D domain–domain interactions (DDIs). Kbdock can be queried using Pfam domain identifiers, protein sequences or 3D protein structures. For a given query domain or pair of domains, Kbdock retrieves and displays a non-redundant list of homologous DDIs or domain–peptide interactions in a common coordinate frame. Kbdock may also be used to search for and visualize interactions involving different, but structurally similar, Pfam families. Thus, structural DDI templates may be proposed even when there is little or no sequence similarity to the query domains.
Collapse
Affiliation(s)
- Anisah W Ghoorah
- Université de Lorraine, LORIA, Campus Scientifique, BP 239, 54506 Villers-lès-Nancy, France, CNRS, LORIA, Campus Scientifique, BP 239, 54506 Villers-lès-Nancy, France and INRIA Nancy Grand Est, LORIA, Campus Scientifique, BP 239, 54506 Villers-lès-Nancy, France
| | | | | | | |
Collapse
|
49
|
May A, Pool R, van Dijk E, Bijlard J, Abeln S, Heringa J, Feenstra KA. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins. ACTA ACUST UNITED AC 2013; 30:326-34. [PMID: 24273239 DOI: 10.1093/bioinformatics/btt675] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full atomistic molecular simulation methods do have this potential, but are completely unfeasible for large-scale applications in terms of computational cost required. Here we investigate whether applying coarse-grained (CG) molecular dynamics simulations is a viable alternative for complexes of known structure. RESULTS We calculate the free energy barrier with respect to the bound state based on molecular dynamics simulations using both a full atomistic and a CG force field for the TCR-pMHC complex and the MP1-p14 scaffolding complex. We find that the free energy barriers from the CG simulations are of similar accuracy as those from the full atomistic ones, while achieving a speedup of >500-fold. We also observe that extensive sampling is extremely important to obtain accurate free energy barriers, which is only within reach for the CG models. Finally, we show that the CG model preserves biological relevance of the interactions: (i) we observe a strong correlation between evolutionary likelihood of mutations and the impact on the free energy barrier with respect to the bound state; and (ii) we confirm the dominant role of the interface core in these interactions. Therefore, our results suggest that CG molecular simulations can realistically be used for the accurate prediction of protein-protein interaction strength. AVAILABILITY AND IMPLEMENTATION The python analysis framework and data files are available for download at http://www.ibi.vu.nl/downloads/bioinformatics-2013-btt675.tgz.
Collapse
Affiliation(s)
- Ali May
- Centre for Integrative Bioinformatics (IBIVU), VU University Amsterdam, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), VU University Amsterdam, Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Netherlands Bioinformatics Centre (NBIC), Geert Grooteplein 28 6525 GA Nijmegen, The Netherlands and Department of Biological Psychology, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Agrawal NJ, Helk B, Trout BL. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein. FEBS Lett 2013; 588:326-33. [PMID: 24239538 DOI: 10.1016/j.febslet.2013.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins.
Collapse
Affiliation(s)
- Neeraj J Agrawal
- Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E19-502b, Cambridge, MA 02139, USA
| | | | - Bernhardt L Trout
- Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E19-502b, Cambridge, MA 02139, USA.
| |
Collapse
|