1
|
Mrázek J, Karls AC. In silico simulations of occurrence of transcription factor binding sites in bacterial genomes. BMC Evol Biol 2019; 19:67. [PMID: 30823869 PMCID: PMC6397444 DOI: 10.1186/s12862-019-1381-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Background Interactions between transcription factors and their specific binding sites are a key component of regulation of gene expression. Until recently, it was generally assumed that most bacterial transcription factor binding sites are located at or near promoters. However, several recent works utilizing high-throughput technology to detect transcription factor binding sites in bacterial genomes found a large number of binding sites in unexpected locations, particularly inside genes, as opposed to known or expected promoter regions. While some of these intragenic binding sites likely have regulatory functions, an alternative scenario is that many of these binding sites arise by chance in the absence of selective constraints. The latter possibility was supported by in silico simulations for σ54 binding sites in Salmonella. Results In this work, we extend these simulations to more than forty transcription factors from E. coli and other bacteria. The results suggest that binding sites for all analyzed transcription factors are likely to arise throughout the genome by random genetic drift and many transcription factor binding sites found in genomes may not have specific regulatory functions. In addition, when comparing observed and expected patterns of occurrence of binding sites in genomes, we observed distinct differences among different transcription factors. Conclusions We speculate that transcription factor binding sites randomly occurring throughout the genome could be beneficial in promoting emergence of new regulatory interactions and thus facilitating evolution of gene regulatory networks. Electronic supplementary material The online version of this article (10.1186/s12862-019-1381-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Mrázek
- Department of Microbiology, University of Georgia, Athens, GA, USA. .,Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| | - Anna C Karls
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Stoudenmire JL, Schmidt AL, Tumen-Velasquez MP, Elliott KT, Laniohan NS, Walker Whitley S, Galloway NR, Nune M, West M, Momany C, Neidle EL, Karls AC. Malonate degradation in Acinetobacter baylyi ADP1: operon organization and regulation by MdcR. MICROBIOLOGY-SGM 2017; 163:789-803. [PMID: 28537542 DOI: 10.1099/mic.0.000462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcriptional regulators in the LysR or GntR families are typically encoded in the genomic neighbourhood of bacterial genes for malonate degradation. While these arrangements have been evaluated using bioinformatics methods, experimental studies demonstrating co-transcription of predicted operons were lacking. Here, transcriptional regulation was characterized for a cluster of mdc genes that enable a soil bacterium, Acinetobacter baylyi ADP1, to use malonate as a carbon source. Despite previous assumptions that the mdc-gene set forms one operon, our studies revealed distinct promoters in two different regions of a nine-gene cluster. Furthermore, a single promoter is insufficient to account for transcription of mdcR, a regulatory gene that is convergent to other mdc genes. MdcR, a LysR-type transcriptional regulator, was shown to bind specifically to a site where it can activate mdc-gene transcription. Although mdcR deletion prevented growth on malonate, a 1 nt substitution in the promoter of mdcA enabled MdcR-independent growth on this carbon source. Regulation was characterized by methods including transcriptional fusions, quantitative reverse transcription PCR, reverse transcription PCR, 5'-rapid amplification of cDNA ends and gel shift assays. Moreover, a new technique was developed for transcriptional characterization of low-copy mRNA by increasing the DNA copy number of specific chromosomal regions. MdcR was shown to respond to malonate, in the absence of its catabolism. These studies contribute to ongoing characterization of the structure and function of a set of 44 LysR-type transcriptional regulators in A. baylyi ADP1.
Collapse
Affiliation(s)
| | - Alicia L Schmidt
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | | - Nicole S Laniohan
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - S Walker Whitley
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Present address: Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nickolaus R Galloway
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Melesse Nune
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
- Present address: Department of Biophysics and Biophysical Chemistry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael West
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
- Present address: University of Oregon, Eugene, OR, USA
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Anna C Karls
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
UpCoT: an integrated pipeline tool for clustering upstream DNA sequences of orthologous genes in prokaryotic genomes. 3 Biotech 2016; 6:74. [PMID: 28330144 PMCID: PMC4755962 DOI: 10.1007/s13205-016-0363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/08/2016] [Indexed: 11/30/2022] Open
Abstract
UpCoT is a pipeline tool developed by automating the series of steps involved in prediction of cis-regulatory elements. UpCoT generates orthologs for each gene in target genome using bi-directional best blast hit against the reference genomes, then identifies potential orthologous transcriptional units using intergenic distance. Finally it generates the FASTA files containing upstream sequences of orthologous transcriptional units of each gene in target genome. The inputs of UpCoT are protein sequence files (*.faa), genome sequence files (*.fna) and gene co-ordinate files (*.ptt) for target and reference genomes. The clustered-upstream DNA sequences can be used by motif prediction tool, such as MEME, Bio-prospector, Gibbs motif sampler, MDscan for prediction of conserved DNA elements. We tested the performance of UpCoT by selecting the genome of Synechocystis sp PCC 6803 as the target and 13 different cyanobacterial genomes as reference. The clustered upstream sequences generated by UpCoT of groES, ycf24 and nirA were used for cis-regulatory element prediction. The results were consistent with the experimentally identified cis-regulatory elements. Therefore, UpCoT is a reliable and automated pipeline package for prediction of orthologs, orthologous transcriptional units, and orthologous upstream sequences of a selected prokaryotic genome. UpCoT can be downloaded from http://jssplab.uohyd.ac.in/upcot/.
Collapse
|
4
|
Mehmood T, Bohlin J, Snipen L. A Partial Least Squares Based Procedure for Upstream Sequence Classification in Prokaryotes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:560-567. [PMID: 26357267 DOI: 10.1109/tcbb.2014.2366146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The upstream region of coding genes is important for several reasons, for instance locating transcription factor, binding sites, and start site initiation in genomic DNA. Motivated by a recently conducted study, where multivariate approach was successfully applied to coding sequence modeling, we have introduced a partial least squares (PLS) based procedure for the classification of true upstream prokaryotic sequence from background upstream sequence. The upstream sequences of conserved coding genes over genomes were considered in analysis, where conserved coding genes were found by using pan-genomics concept for each considered prokaryotic species. PLS uses position specific scoring matrix (PSSM) to study the characteristics of upstream region. Results obtained by PLS based method were compared with Gini importance of random forest (RF) and support vector machine (SVM), which is much used method for sequence classification. The upstream sequence classification performance was evaluated by using cross validation, and suggested approach identifies prokaryotic upstream region significantly better to RF (p-value < 0.01) and SVM (p-value < 0.01). Further, the proposed method also produced results that concurred with known biological characteristics of the upstream region.
Collapse
|
5
|
Rigali S, Nivelle R, Tocquin P. On the necessity and biological significance of threshold-free regulon prediction outputs. MOLECULAR BIOSYSTEMS 2014; 11:333-7. [PMID: 25387521 DOI: 10.1039/c4mb00485j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in silico prediction of cis-acting elements in a genome is an efficient way to quickly obtain an overview of the biological processes controlled by a trans-acting factor, and connections between regulatory networks. Several regulon prediction web tools are available, designed to identify DNA motifs predicted to be bound by transcription factors using position weight matrix-based algorithms. In this paper we expose and discuss the conflicting objectives of software creators (bioinformaticians) and software users (biologists), who aim for reliable and exhaustive prediction outputs, respectively. Software makers, concerned with providing tools that minimise the number of false positive hits, often impose a stringent threshold score for a sequence to be included in the list of the putative cis-acting sites. This rigidity eventually results in the identification of strongly reliable but largely straightforward sites, i.e. those associated with genes already anticipated to be targeted by the studied transcription factor. Importantly, this biased identification of strongly bound sequences contrasts with the biological reality where, in many circumstances, a weak DNA-protein interaction is required for the appropriate gene's expression. We show here a series of transcriptionally controlled systems involving weakly bound cis-acting elements that could never have been discovered because of the policy of preventing software users from modifying the screening parameters. Proposing only trustworthy prediction outputs thus prevents biologists from fully utilising their knowledge background and deciding to analyse statistically irrelevant hits that could nonetheless be potentially involved in subtle, unexpected, though essential cis-trans relationships.
Collapse
Affiliation(s)
- Sébastien Rigali
- Centre for Protein Engineering, University of Liège, Institut de Chimie B6a, B-4000 Liège, Belgium.
| | | | | |
Collapse
|
6
|
Samuels DJ, Frye JG, Porwollik S, McClelland M, Mrázek J, Hoover TR, Karls AC. Use of a promiscuous, constitutively-active bacterial enhancer-binding protein to define the σ⁵⁴ (RpoN) regulon of Salmonella Typhimurium LT2. BMC Genomics 2013; 14:602. [PMID: 24007446 PMCID: PMC3844500 DOI: 10.1186/1471-2164-14-602] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background Sigma54, or RpoN, is an alternative σ factor found widely in eubacteria. A significant complication in analysis of the global σ54 regulon in a bacterium is that the σ54 RNA polymerase holoenzyme requires interaction with an active bacterial enhancer-binding protein (bEBP) to initiate transcription at a σ54-dependent promoter. Many bacteria possess multiple bEBPs, which are activated by diverse environmental stimuli. In this work, we assess the ability of a promiscuous, constitutively-active bEBP—the AAA+ ATPase domain of DctD from Sinorhizobium meliloti—to activate transcription from all σ54-dependent promoters for the characterization of the σ54 regulon of Salmonella Typhimurium LT2. Results The AAA+ ATPase domain of DctD was able to drive transcription from nearly all previously characterized or predicted σ54-dependent promoters in Salmonella under a single condition. These promoters are controlled by a variety of native activators and, under the condition tested, are not transcribed in the absence of the DctD AAA+ ATPase domain. We also identified a novel σ54-dependent promoter upstream of STM2939, a homolog of the cas1 component of a CRISPR system. ChIP-chip analysis revealed at least 70 σ54 binding sites in the chromosome, of which 58% are located within coding sequences. Promoter-lacZ fusions with selected intragenic σ54 binding sites suggest that many of these sites are capable of functioning as σ54-dependent promoters. Conclusion Since the DctD AAA+ ATPase domain proved effective in activating transcription from the diverse σ54-dependent promoters of the S. Typhimurium LT2 σ54 regulon under a single growth condition, this approach is likely to be valuable for examining σ54 regulons in other bacterial species. The S. Typhimurium σ54 regulon included a high number of intragenic σ54 binding sites/promoters, suggesting that σ54 may have multiple regulatory roles beyond the initiation of transcription at the start of an operon.
Collapse
Affiliation(s)
- David J Samuels
- Department of Microbiology, University of Georgia, 30602, Athens, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Cornish JP, Matthews F, Thomas JR, Erill I. Inference of self-regulated transcriptional networks by comparative genomics. Evol Bioinform Online 2012; 8:449-61. [PMID: 23032607 PMCID: PMC3422134 DOI: 10.4137/ebo.s9205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The assumption of basic properties, like self-regulation, in simple transcriptional regulatory networks can be exploited to infer regulatory motifs from the growing amounts of genomic and meta-genomic data. These motifs can in principle be used to elucidate the nature and scope of transcriptional networks through comparative genomics. Here we assess the feasibility of this approach using the SOS regulatory network of Gram-positive bacteria as a test case. Using experimentally validated data, we show that the known regulatory motif can be inferred through the assumption of self-regulation. Furthermore, the inferred motif provides a more robust search pattern for comparative genomics than the experimental motifs defined in reference organisms. We take advantage of this robustness to generate a functional map of the SOS response in Gram-positive bacteria. Our results reveal definite differences in the composition of the LexA regulon between Firmicutes and Actinobacteria, and confirm that regulation of cell-division inhibition is a widespread characteristic of this network among Gram-positive bacteria.
Collapse
Affiliation(s)
- Joseph P Cornish
- Department of Biological Sciences, University of Maryland Baltimore County
| | | | | | | |
Collapse
|
8
|
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ. Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011; 12:385. [PMID: 21806785 PMCID: PMC3162934 DOI: 10.1186/1471-2164-12-385] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
Background Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. Results We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. Conclusion Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O,Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
9
|
Touzain F, Petit MA, Schbath S, El Karoui M. DNA motifs that sculpt the bacterial chromosome. Nat Rev Microbiol 2011; 9:15-26. [PMID: 21164534 DOI: 10.1038/nrmicro2477] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the bacterial cell cycle, the processes of chromosome replication, DNA segregation, DNA repair and cell division are coordinated by precisely defined events. Tremendous progress has been made in recent years in identifying the mechanisms that underlie these processes. A striking feature common to these processes is that non-coding DNA motifs play a central part, thus 'sculpting' the bacterial chromosome. Here, we review the roles of these motifs in the mechanisms that ensure faithful transmission of genetic information to daughter cells. We show how their chromosomal distribution is crucial for their function and how it can be analysed quantitatively. Finally, the potential roles of these motifs in bacterial chromosome evolution are discussed.
Collapse
Affiliation(s)
- Fabrice Touzain
- INRA, UMR 1319, Institut Micalis, FR-78352, Jouy-en-Josas, France
| | | | | | | |
Collapse
|