1
|
Differential gene expression by RNA-seq during Alzheimer’s disease-like progression in the Drosophila melanogaster model. Neurosci Res 2022; 180:1-12. [DOI: 10.1016/j.neures.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/10/2023]
|
2
|
Saqi M, Lysenko A, Guo YK, Tsunoda T, Auffray C. Navigating the disease landscape: knowledge representations for contextualizing molecular signatures. Brief Bioinform 2019; 20:609-623. [PMID: 29684165 PMCID: PMC6556902 DOI: 10.1093/bib/bby025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Large amounts of data emerging from experiments in molecular medicine are leading to the identification of molecular signatures associated with disease subtypes. The contextualization of these patterns is important for obtaining mechanistic insight into the aberrant processes associated with a disease, and this typically involves the integration of multiple heterogeneous types of data. In this review, we discuss knowledge representations that can be useful to explore the biological context of molecular signatures, in particular three main approaches, namely, pathway mapping approaches, molecular network centric approaches and approaches that represent biological statements as knowledge graphs. We discuss the utility of each of these paradigms, illustrate how they can be leveraged with selected practical examples and identify ongoing challenges for this field of research.
Collapse
Affiliation(s)
- Mansoor Saqi
- Mansoor Saqi Data Science Institute, Imperial College London, UK
| | - Artem Lysenko
- Artem Lysenko Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yi-Ke Guo
- Yi-Ke Guo Data Science Institute, Imperial College London, UK
| | - Tatsuhiko Tsunoda
- Tatsuhiko Tsunoda Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan CREST, JST, Tokyo, Japan Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Charles Auffray
- Charles Auffray European Institute for Systems Biology and Medicine, Lyon, France
| |
Collapse
|
3
|
Hoyt CT, Domingo-Fernández D, Aldisi R, Xu L, Kolpeja K, Spalek S, Wollert E, Bachman J, Gyori BM, Greene P, Hofmann-Apitius M. Re-curation and rational enrichment of knowledge graphs in Biological Expression Language. Database (Oxford) 2019; 2019:baz068. [PMID: 31225582 PMCID: PMC6587072 DOI: 10.1093/database/baz068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022]
Abstract
The rapid accumulation of new biomedical literature not only causes curated knowledge graphs (KGs) to become outdated and incomplete, but also makes manual curation an impractical and unsustainable solution. Automated or semi-automated workflows are necessary to assist in prioritizing and curating the literature to update and enrich KGs. We have developed two workflows: one for re-curating a given KG to assure its syntactic and semantic quality and another for rationally enriching it by manually revising automatically extracted relations for nodes with low information density. We applied these workflows to the KGs encoded in Biological Expression Language from the NeuroMMSig database using content that was pre-extracted from MEDLINE abstracts and PubMed Central full-text articles using text mining output integrated by INDRA. We have made this workflow freely available at https://github.com/bel-enrichment/bel-enrichment.
Collapse
Affiliation(s)
- Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rana Aldisi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lingling Xu
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Kristian Kolpeja
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Sandra Spalek
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Esther Wollert
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - John Bachman
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Patrick Greene
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
4
|
Domingo-Fernández D, Kodamullil AT, Iyappan A, Naz M, Emon MA, Raschka T, Karki R, Springstubbe S, Ebeling C, Hofmann-Apitius M. Multimodal mechanistic signatures for neurodegenerative diseases (NeuroMMSig): a web server for mechanism enrichment. Bioinformatics 2018. [PMID: 28651363 PMCID: PMC5870765 DOI: 10.1093/bioinformatics/btx399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation The concept of a 'mechanism-based taxonomy of human disease' is currently replacing the outdated paradigm of diseases classified by clinical appearance. We have tackled the paradigm of mechanism-based patient subgroup identification in the challenging area of research on neurodegenerative diseases. Results We have developed a knowledge base representing essential pathophysiology mechanisms of neurodegenerative diseases. Together with dedicated algorithms, this knowledge base forms the basis for a 'mechanism-enrichment server' that supports the mechanistic interpretation of multiscale, multimodal clinical data. Availability and implementation NeuroMMSig is available at http://neurommsig.scai.fraunhofer.de/. Contact martin.hofmann-apitius@scai.fraunhofer.de. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn 53113, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn 53113, Germany
| | - Anandhi Iyappan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn 53113, Germany
| | - Mufassra Naz
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn 53113, Germany
| | - Mohammad Asif Emon
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn 53113, Germany
| | - Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn 53113, Germany
| | - Reagon Karki
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn 53113, Germany
| | - Stephan Springstubbe
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany
| | - Christian Ebeling
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53754, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn 53113, Germany
| |
Collapse
|
5
|
Fluck J, Madan S, Ansari S, Kodamullil AT, Karki R, Rastegar-Mojarad M, Catlett NL, Hayes W, Szostak J, Hoeng J, Peitsch M. Training and evaluation corpora for the extraction of causal relationships encoded in biological expression language (BEL). DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw113. [PMID: 27554092 PMCID: PMC4995071 DOI: 10.1093/database/baw113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/07/2016] [Indexed: 01/21/2023]
Abstract
Success in extracting biological relationships is mainly dependent on the complexity of the task as well as the availability of high-quality training data. Here, we describe the new corpora in the systems biology modeling language BEL for training and testing biological relationship extraction systems that we prepared for the BioCreative V BEL track. BEL was designed to capture relationships not only between proteins or chemicals, but also complex events such as biological processes or disease states. A BEL nanopub is the smallest unit of information and represents a biological relationship with its provenance. In BEL relationships (called BEL statements), the entities are normalized to defined namespaces mainly derived from public repositories, such as sequence databases, MeSH or publicly available ontologies. In the BEL nanopubs, the BEL statements are associated with citation information and supportive evidence such as a text excerpt. To enable the training of extraction tools, we prepared BEL resources and made them available to the community. We selected a subset of these resources focusing on a reduced set of namespaces, namely, human and mouse genes, ChEBI chemicals, MeSH diseases and GO biological processes, as well as relationship types ‘increases’ and ‘decreases’. The published training corpus contains 11 000 BEL statements from over 6000 supportive text excerpts. For method evaluation, we selected and re-annotated two smaller subcorpora containing 100 text excerpts. For this re-annotation, the inter-annotator agreement was measured by the BEL track evaluation environment and resulted in a maximal F-score of 91.18% for full statement agreement. In addition, for a set of 100 BEL statements, we do not only provide the gold standard expert annotations, but also text excerpts pre-selected by two automated systems. Those text excerpts were evaluated and manually annotated as true or false supportive in the course of the BioCreative V BEL track task. Database URL:http://wiki.openbel.org/display/BIOC/Datasets
Collapse
Affiliation(s)
- Juliane Fluck
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany
| | - Sumit Madan
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - Alpha T Kodamullil
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany
| | - Reagon Karki
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany
| | | | | | - William Hayes
- Selventa, One Alewife Center, Cambridge, MA 02140, USA
| | - Justyna Szostak
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - Manuel Peitsch
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| |
Collapse
|
6
|
Torkamandi S, Bastami M, Ghaedi H, Moghadam F, Mirfakhraie R, Omrani MD. MAP3K1 May be a Promising Susceptibility Gene for Type 2 Diabetes Mellitus in an Iranian Population. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2016; 5:134-140. [PMID: 27942499 PMCID: PMC5125365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/02/2016] [Indexed: 11/11/2022]
Abstract
Considering that MAPK (mitogen- activated protein kinase) signaling pathway has an important role in the progression of inflammatory cytokine secretion in type 2 diabetes mellitus (T2DM), we have recently investigated the reported genetic polymorphism from genome wide association study in MAP3K1 (mitogen-activated protein kinase kinase kinase 1) in diabetes as an important member of MAPK signaling. This study aimed to investigate the possible association of rs10461617 at the upstream of MAP3K1 gene in an Iranian case-control study with the risk of T2DM. The study population was comprised of 342 unrelated Iranian individuals including 177 patients with T2DM and 165 unrelated healthy control subjects. Genotyping was performed using PCR-RFLP and confirmed with sequencing. In a logistic regression analysis, the rs10461617A allele was associated with a significantly higher risk of T2DM assuming the log- additive model (OR: 1.44, 95% CI: 1.01-2.05, P = 0.039). In conclusion, we provided the first evidence for the association of rs10461617 at the upstream of MAP3K1 with the risk of T2DM in an Iranian population.
Collapse
Affiliation(s)
- Shahram Torkamandi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fateme Moghadam
- Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hofmann-Apitius M, Ball G, Gebel S, Bagewadi S, de Bono B, Schneider R, Page M, Kodamullil AT, Younesi E, Ebeling C, Tegnér J, Canard L. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders. Int J Mol Sci 2015; 16:29179-206. [PMID: 26690135 PMCID: PMC4691095 DOI: 10.3390/ijms161226148] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022] Open
Abstract
Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies-data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European Commission (EC).
Collapse
Affiliation(s)
- Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Institutszentrum Birlinghoven, Sankt Augustin D-53754, Germany.
- Rheinische Friedrich-Wilhelms-Universitaet Bonn, University of Bonn, Bonn 53113, Germany.
| | - Gordon Ball
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, and Unit of Clinical Epidemiology, Karolinska University Hospital, Stockholm SE-171 77, Sweden.
- Science for Life Laboratories, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| | - Stephan Gebel
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg.
| | - Shweta Bagewadi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Institutszentrum Birlinghoven, Sankt Augustin D-53754, Germany.
| | - Bernard de Bono
- Institute of Health Informatics, University College London, London NW1 2DA, UK.
- Auckland Bioengineering Institute, University of Auckland, Symmonds Street, Auckland 1142, New Zealand.
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg.
| | - Matt Page
- Translational Bioinformatics, UCB Pharma, 216 Bath Rd, Slough SL1 3WE, UK.
| | - Alpha Tom Kodamullil
- Rheinische Friedrich-Wilhelms-Universitaet Bonn, University of Bonn, Bonn 53113, Germany.
| | - Erfan Younesi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Institutszentrum Birlinghoven, Sankt Augustin D-53754, Germany.
| | - Christian Ebeling
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Institutszentrum Birlinghoven, Sankt Augustin D-53754, Germany.
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, and Unit of Clinical Epidemiology, Karolinska University Hospital, Stockholm SE-171 77, Sweden.
- Science for Life Laboratories, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| | - Luc Canard
- Translational Science Unit, SANOFI Recherche & Développement, 1 Avenue Pierre Brossolette, Chilly-Mazarin Cedex 91385, France.
| |
Collapse
|