1
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Manzoor F, Tsurgeon CA, Gupta V. Exploring RNA-Seq Data Analysis Through Visualization Techniques and Tools: A Systematic Review of Opportunities and Limitations for Clinical Applications. Bioengineering (Basel) 2025; 12:56. [PMID: 39851330 PMCID: PMC11760846 DOI: 10.3390/bioengineering12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/28/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
RNA sequencing (RNA-seq) has emerged as a prominent resource for transcriptomic analysis due to its ability to measure gene expression in a highly sensitive and accurate manner. With the increasing availability of RNA-seq data analysis from clinical studies and patient samples, the development of effective visualization tools for RNA-seq analysis has become increasingly important to help clinicians and biomedical researchers better understand the complex patterns of gene expression associated with health and disease. This review aims to outline the current state-of-the-art data visualization techniques and tools commonly used to frame clinical inferences from RNA-seq data and point out their benefits, applications, and limitations. A systematic review of English articles using PubMed, Scopus, Web of Science, and IEEE Xplore databases was performed. Search terms included "RNA-seq", "visualization", "plots", and "clinical". Only full-text studies reported between 2017 and 2024 were included for analysis. Following PRISMA guidelines, a total of 126 studies were identified, of which 33 studies met the inclusion criteria. We found that 18% of studies have visualization techniques and tools for circular RNA-seq data, 56% for single-cell RNA-seq data, 23% for bulk RNA-seq data, and 3% for long non-coding RNA-seq data. Overall, this review provides a comprehensive overview of the common visualization tools and their potential applications, which is a useful resource for researchers and clinicians interested in using RNA-seq data for various clinical purposes (e.g., diagnosis or prognosis).
Collapse
Affiliation(s)
- Farhana Manzoor
- Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37208, USA;
| | - Cyruss A. Tsurgeon
- Department of Biomedical Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37208, USA;
| | - Vibhuti Gupta
- Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
3
|
Chaudhary U, Banerjee S. Decoding the Non-coding: Tools and Databases Unveiling the Hidden World of "Junk" RNAs for Innovative Therapeutic Exploration. ACS Pharmacol Transl Sci 2024; 7:1901-1915. [PMID: 39022352 PMCID: PMC11249652 DOI: 10.1021/acsptsci.3c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Non-coding RNAs are pivotal regulators of gene and protein expression, exerting crucial influences on diverse biological processes. Their dysregulation is frequently implicated in the onset and progression of diseases, notably cancer. A profound comprehension of the intricate mechanisms governing ncRNAs is imperative for devising innovative therapeutic interventions against these debilitating conditions. Significantly, nearly 80% of our genome comprises ncRNAs, underscoring their centrality in cellular processes. The elucidation of ncRNA functions is pivotal for grasping the complexities of gene regulation and its implications for human health. Modern genome sequencing techniques yield vast datasets, stored in specialized databases. To harness this wealth of information and to understand the crosstalk of non-coding RNAs, knowledge of available databases is required, and many new sophisticated computational tools have emerged. These tools play a pivotal role in the identification, prediction, and annotation of ncRNAs, thereby facilitating their experimental validation. This Review succinctly outlines the current understanding of ncRNAs, emphasizing their involvement in disease development. It also highlights the databases and tools instrumental in classifying, annotating, and evaluating ncRNAs. By extracting meaningful biological insights from seemingly "junk" data, these tools empower scientists to unravel the intricate roles of ncRNAs in shaping human health.
Collapse
Affiliation(s)
- Uma Chaudhary
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
4
|
Gao Y, Xu SM, Cheng Y, Takenaka K, Lindner G, Janitz M. Investigation of the Circular Transcriptome in Alzheimer's Disease Brain. J Mol Neurosci 2024; 74:64. [PMID: 38981928 PMCID: PMC11233389 DOI: 10.1007/s12031-024-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs which have demonstrated potential as biomarkers for Alzheimer's disease (AD). In this study, we conducted a comprehensive exploration of the circRNA transcriptome within AD brain tissues. Specifically, we assessed circRNA expression patterns in the dorsolateral prefrontal cortex collected from nine AD-afflicted individuals and eight healthy controls. Utilising two circRNA detection tools, CIRI2 and CIRCexplorer2, we detected thousands of circRNAs and performed a differential expression analysis. CircRNAs which exhibited statistically significantly differential expression were identified as AD-specific differentially expressed circRNAs. Notably, our investigation revealed 120 circRNAs with significant upregulation and 1325 circRNAs displaying significant downregulation in AD brains when compared to healthy brain tissue. Additionally, we explored the expression profiles of the linear RNA counterparts corresponding to differentially expressed circRNAs in AD-afflicted brains and discovered that the linear RNA counterparts exhibited no significant changes in the levels of expression. We used CRAFT tool to predict that circUBE4B had potential to target miRNA named as hsa-miR-325-5p, ultimately regulated CD44 gene. This study provides a comprehensive overview of differentially expressed circRNAs in the context of AD brains, underscoring their potential as molecular biomarkers for AD. These findings significantly enhance our comprehension of AD's underlying pathophysiological mechanisms, offering promising avenues for future diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
5
|
Ruan H, Wang PC, Han L. Characterization of circular RNAs with advanced sequencing technologies in human complex diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1759. [PMID: 36164985 DOI: 10.1002/wrna.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 01/31/2023]
Abstract
Circular RNAs (circRNAs) are one category of non-coding RNAs that do not possess 5' caps and 3' free ends. Instead, they are derived in closed circle forms from pre-mRNAs by a non-canonical splicing mechanism named "back-splicing." CircRNAs were discovered four decades ago, initially called "scrambled exons." Compared to linear RNAs, the expression levels of circRNAs are considerably lower, and it is challenging to identify circRNAs specifically. Thus, the biological relevance of circRNAs has been underappreciated until the advancement of next generation sequencing (NGS) technology. The biological insights of circRNAs, such as their tissue-specific expression patterns, biogenesis factors, and functional effects in complex diseases, namely human cancers, have been extensively explored in the last decade. With the invention of the third generation sequencing (TGS) with longer sequencing reads and newly designed strategies to characterize full-length circRNAs, the panorama of circRNAs in human complex diseases could be further unveiled. In this review, we first introduce the history of circular RNA detection. Next, we describe widely adopted NGS-based methods and the recently established TGS-based approaches capable of characterizing circRNAs in full-length. We then summarize data resources and representative circRNA functional studies related to human complex diseases. In the last section, we reviewed computational tools and discuss the potential advantages of utilizing advanced sequencing approaches to a functional interpretation of full-length circRNAs in complex diseases. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Hang Ruan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Peng-Cheng Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
6
|
Yang J, Hou L, Wang J, Xiao L, Zhang J, Yin N, Yao S, Cheng K, Zhang W, Shi Z, Wang J, Jiang H, Huang N, You Y, Lin M, Shang R, Wei Y, Zhao Y, Zhao F. Unfavourable intrauterine environment contributes to abnormal gut microbiome and metabolome in twins. Gut 2022; 71:2451-2462. [PMID: 35387876 PMCID: PMC9664093 DOI: 10.1136/gutjnl-2021-326482] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Fetal growth restriction (FGR) is a devastating pregnancy complication that increases the risk of perinatal mortality and morbidity. This study aims to determine the combined and relative effects of genetic and intrauterine environments on neonatal microbial communities and to explore selective FGR-induced gut microbiota disruption, metabolic profile disturbances and possible outcomes. DESIGN We profiled and compared the gut microbial colonisation of 150 pairs of twin neonates who were classified into four groups based on their chorionicity and discordance of fetal birth weight. Gut microbiota dysbiosis and faecal metabolic alterations were determined by 16S ribosomal RNA and metagenomic sequencing and metabolomics, and the long-term effects were explored by surveys of physical and neurocognitive development conducted after 2~3 years of follow-up. RESULTS Adverse intrauterine environmental factors related to selective FGR dominate genetics in their effects of elevating bacterial diversity and altering the composition of early-life gut microbiota, and this effect is positively related to the severity of selective FGR in twins. The influence of genetic factors on gut microbes diminishes in the context of selective FGR. Gut microbiota dysbiosis in twin neonates with selective FGR and faecal metabolic alterations features decreased abundances of Enterococcus and Acinetobacter and downregulated methionine and cysteine levels. Correlation analysis indicates that the faecal cysteine level in early life is positively correlated with the physical and neurocognitive development of infants. CONCLUSION Dysbiotic microbiota profiles and pronounced metabolic alterations are associated with selective FGR affected by adverse intrauterine environments, emphasising the possible effects of dysbiosis on long-term neurobehavioural development.
Collapse
Affiliation(s)
- Jing Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lingling Hou
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Jinyang Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Nanlin Yin
- Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Yao
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co Ltd, Beijing, China
| | - Kun Cheng
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co Ltd, Beijing, China
| | - Wen Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zhonghua Shi
- Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Hai Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Nana Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yanxia You
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Mingmei Lin
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ruiyan Shang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Bin Li, Yan R, Liu X, Meng Z, Meng P, Wang Y, Huang Y. CircRNAs Biogenesis, Functions, and Its Research Progress in Aquaculture. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Function of Circular RNAs in Fish and Their Potential Application as Biomarkers. Int J Mol Sci 2021; 22:ijms22137119. [PMID: 34281172 PMCID: PMC8268770 DOI: 10.3390/ijms22137119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are an emerging class of regulatory RNAs with a covalently closed-loop structure formed during pre-mRNA splicing. Recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of novel approaches to their identification and functional characterization. CircRNAs are stable, developmentally regulated, and show tissue- and cell-type-specific expression across different taxonomic groups. They play a crucial role in regulating various biological processes at post-transcriptional and translational levels. However, the involvement of circRNAs in fish immunity has only recently been recognized. There is also broad evidence in mammals that the timely expression of circRNAs in muscle plays an essential role in growth regulation but our understanding of their expression and function in teleosts is still very limited. Here, we discuss the available knowledge about circRNAs and their role in growth and immunity in vertebrates from a comparative perspective, with emphasis on cultured teleost fish. We expect that the interest in teleost circRNAs will increase substantially soon, and we propose that they may be used as biomarkers for selective breeding of farmed fish, thus contributing to the sustainability of the aquaculture sector.
Collapse
|
9
|
Ferrero G, Licheri N, De Bortoli M, Calogero RA, Beccuti M, Cordero F. Computational Analysis of circRNA Expression Data. Methods Mol Biol 2021; 2284:181-192. [PMID: 33835443 DOI: 10.1007/978-1-0716-1307-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Analysis of circular RNA (circRNA) expression from RNA-Seq data can be performed with different algorithms and analysis pipelines, tools allowing the extraction of heterogeneous information on the expression of this novel class of RNAs. Computational pipelines were developed to facilitate the analysis of circRNA expression by leveraging different public tools in easy-to-use pipelines. This chapter describes the complete workflow for a computationally reproducible analysis of circRNA expression starting for a public RNA-Seq experiment. The main steps of circRNA prediction, annotation, classification, sequence reconstruction, quantification, and differential expression are illustrated.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Nicola Licheri
- Department of Computer Science, University of Turin, Turin, Italy
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marco Beccuti
- Department of Computer Science, University of Turin, Turin, Italy
| | | |
Collapse
|
10
|
Pedraz-Valdunciel C, Rosell R. Defining the landscape of circRNAs in non-small cell lung cancer and their potential as liquid biopsy biomarkers: a complete review including current methods. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:179-201. [PMID: 39697533 PMCID: PMC11648509 DOI: 10.20517/evcna.2020.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2024]
Abstract
Despite the significant decrease in population-level mortality of lung cancer patients as reflected in the Surveillance Epidemiology and End Results program national database, lung cancer, with non-small cell lung cancer (NSCLC) in the lead, continues to be the most commonly diagnosed cancer and foremost cause of cancer-related death worldwide, primarily due to late-stage diagnosis and ineffective treatment regimens. Although innovative single therapies and their combinations are constantly being tested in clinical trials, the five-year survival rate of late-stage lung cancer remains only 5% (Cancer Research, UK). Henceforth, investigation in the early diagnosis of lung cancer and prediction of treatment response is critical for improving the overall survival of these patients. Circular RNAs (circRNAs) are a re-discovered type of RNAs featuring stable structure and high tissue-specific expression. Evidence has revealed that aberrant circRNA expression plays an important role in carcinogenesis and tumor progression. Further investigation is warranted to assess the value of EV- and platelet-derived circRNAs as liquid biopsy-based readouts for lung cancer detection. This review discusses the origin and biology of circRNAs, and analyzes their present landscape in NSCLC, focusing on liquid biopsies to illustrate the different methodological trends currently available in research. The possible limitations that could be holding back the clinical implementation of circRNAs are also analyzed.
Collapse
Affiliation(s)
- Carlos Pedraz-Valdunciel
- Cancer Biology and Precision Medicine Department, Germans Trias i Pujol Research Institute and Hospital, Badalona 08916, Spain
- Biochemistry, Molecular Biology and Biomedicine Department, Universitat Autónoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Department, Germans Trias i Pujol Research Institute and Hospital, Badalona 08916, Spain
- Universitat Autónoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
11
|
Liu D, Fang L. Current research on circular RNAs and their potential clinical implications in breast cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0275. [PMID: 34018386 PMCID: PMC8330541 DOI: 10.20892/j.issn.2095-3941.2020.0275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common cancers and the leading causes of death among women worldwide, and its morbidity rate is growing. Discovery of novel biomarkers is necessary for early BC detection, treatment, and prognostication. Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs with covalently closed continuous loops, have been found to have a crucial role in tumorigenesis. Studies have demonstrated that circRNAs are aberrantly expressed in the tumor tissues and plasma of patients with BC, and they modulate gene expression affecting the proliferation, metastasis, and chemoresistance of BC by specifically binding and regulating the expression of microRNAs (miRNAs). Therefore, circRNAs can be used as novel potential diagnostic and prognostic markers, and therapeutic targets for BC. This article summarizes the properties, functions, and regulatory mechanisms of circRNAs, particularly current research on their association with BC proliferation, metastasis, and chemoresistance.
Collapse
Affiliation(s)
- Diya Liu
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| | - Lin Fang
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| |
Collapse
|
12
|
Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, Wong G. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 2021; 22:1706-1728. [PMID: 32103237 PMCID: PMC7986655 DOI: 10.1093/bib/bbaa001] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecule identified more than 40 years ago which are produced by a covalent linkage via back-splicing of linear RNA. Recent advances in sequencing technologies and bioinformatics tools have led directly to an ever-expanding field of types and biological functions of circRNAs. In parallel with technological developments, practical applications of circRNAs have arisen including their utilization as biomarkers of human disease. Currently, circRNA-associated bioinformatics tools can support projects including circRNA annotation, circRNA identification and network analysis of competing endogenous RNA (ceRNA). In this review, we collected about 100 circRNA-associated bioinformatics tools and summarized their current attributes and capabilities. We also performed network analysis and text mining on circRNA tool publications in order to reveal trends in their ongoing development.
Collapse
Affiliation(s)
- Liang Chen
- Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University
| | | | - Huiyan Sun
- School of Artificial Intelligence, Jilin University
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science and Bond Life Science Center, University of Missouri
| | - Yanchun Liang
- College of Computer Science and Technology, Jilin University
| | - Yan Wang
- College of Computer Science and Technology, Jilin University
| | - Garry Wong
- Faculty of Health Sciences, University of Macau
| |
Collapse
|
13
|
Li H, Xie M, Wang Y, Yang L, Xie Z, Wang H. riboCIRC: a comprehensive database of translatable circRNAs. Genome Biol 2021; 22:79. [PMID: 33685493 PMCID: PMC7938571 DOI: 10.1186/s13059-021-02300-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
riboCIRC is a translatome data-oriented circRNA database specifically designed for hosting, exploring, analyzing, and visualizing translatable circRNAs from multi-species. The database provides a comprehensive repository of computationally predicted ribosome-associated circRNAs; a manually curated collection of experimentally verified translated circRNAs; an evaluation of cross-species conservation of translatable circRNAs; a systematic de novo annotation of putative circRNA-encoded peptides, including sequence, structure, and function; and a genome browser to visualize the context-specific occupant footprints of circRNAs. It represents a valuable resource for the circRNA research community and is publicly available at http://www.ribocirc.com .
Collapse
Affiliation(s)
- Huihui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingzhe Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ludong Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Qu W, Jiang L, Hou G. Circ-AFF2/miR-650/CNP axis promotes proliferation, inflammatory response, migration, and invasion of rheumatoid arthritis synovial fibroblasts. J Orthop Surg Res 2021; 16:165. [PMID: 33653372 PMCID: PMC7923650 DOI: 10.1186/s13018-021-02306-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are associated with rheumatoid arthritis (RA) development. The purpose of this study is to explore the function and mechanism of circRNA fragile mental retardation 2 (circ-AFF2) in the processes of rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs). METHODS Circ-AFF2, microRNA (miR)-650, and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) levels were determined in synovial tissues of RA and RAFLSs by quantitative reverse transcription polymerase chain reaction or Western blotting. Cell proliferation, inflammatory response, apoptosis, caspase3 activity, migration, invasion, and epithelial-mesenchymal transition (EMT) were investigated using Cell Counting Kit-8 (CCK-8), enzyme-linked immunosorbent assay (ELISA), flow cytometry, Transwell, and Western blotting analyses. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and pull-down assays were performed to assess the binding relationship. RESULTS Circ-AFF2 expression level was enhanced in synovial tissues of RA and RAFLSs. Circ-AFF2 overexpression facilitated cell proliferation, inflammatory response, migration, invasion, and EMT and repressed apoptosis in RAFLSs. Circ-AFF2 downregulation played an opposite role. Circ-AFF2 targeted miR-650, and miR-650 downregulation reversed the effect of circ-AFF2 interference on RAFLS processes. CNP was targeted by miR-650, and circ-AFF2 increased CNP expression by regulating miR-650. MiR-650 overexpression constrained cell proliferation, inflammatory response, migration, invasion, and EMT and contributed to apoptosis by decreasing CNP in RAFLSs. CONCLUSION Circ-AFF2 promoted proliferation, inflammatory response, migration, and invasion of RAFLSs by modulating the miR-650/CNP axis.
Collapse
Affiliation(s)
- Wei Qu
- Department of Joint and Sports Medicine, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Ling Jiang
- Department of Medical, Zibo Social Welfare Institute, Zibo, Shandong, China
| | - Guanhua Hou
- Department of Orthopedics, Peking University Medical Zibo Hospital, No.2, 5Th Street, Shanlv Xishan, Nanding Town, Zhangdian District, Zibo, Shandong, China.
| |
Collapse
|
15
|
Wang Y, Zhang Y, Wang P, Fu X, Lin W. Circular RNAs in renal cell carcinoma: implications for tumorigenesis, diagnosis, and therapy. Mol Cancer 2020; 19:149. [PMID: 33054773 PMCID: PMC7559063 DOI: 10.1186/s12943-020-01266-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common malignant kidney tumor and has a high incidence rate. Circular RNAs (circRNAs) are noncoding RNAs with widespread distribution and diverse cellular functions. They are highly stable and have organ- and tissue-specific expression patterns. CircRNAs have essential functions as microRNA sponges, RNA-binding protein- and transcriptional regulators, and protein translation templates. Recent reports have shown that circRNAs are abnormally expressed in RCC and act as important regulators of RCC carcinogenesis and progression. Moreover, circRNAs have emerged as potential biomarkers for RCC diagnosis and prognosis and targets for developing new treatments. However, further studies are needed to better understand the functions of circRNAs in RCC. In this review, we summarize and discuss the recent research progress on RCC-associated circRNAs, with a focus on their potential for RCC diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ying Wang
- Kidney Disease Center, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, 322000, Zhejiang, China
| | - Yunjing Zhang
- Kidney Disease Center, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, 322000, Zhejiang, China
| | - Ping Wang
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Weiqiang Lin
- Kidney Disease Center, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, 322000, Zhejiang, China.
| |
Collapse
|
16
|
Zhang Y, Lin X, Geng X, Shi L, Li Q, Liu F, Fang C, Wang H. Advances in circular RNAs and their role in glioma (Review). Int J Oncol 2020; 57:67-79. [PMID: 32319596 PMCID: PMC7252450 DOI: 10.3892/ijo.2020.5049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most common primary tumour of the central nervous system, and is associated with a high postoperative recurrence rate and resistance to chemotherapy. High‑grade glioblastoma in particular has a very poor prognosis and poses a serious threat to human health. Related studies have confirmed that the occurrence and development of gliomas are closely associated with the abnormal expression and regulation of genes. Moreover, the number of studies on the association of the expression of non‑coding RNAs [linear RNAs, microRNAs and circular RNAs (circRNAs)] in human cells with glioma has been gradually increasing in recent years. Among those, circRNAs, previously considered to be 'splicing errors', have been shown to be highly expressed in eukaryotic cells and regulate the biological behaviour of gliomas. circRNAs are highly abundant and stable, and have become a research hotspot in the field of glioma molecular biology. The aim of the present review was to focus on the research progress regarding the association between circRNA expression and gliomas, and to provide a theoretical basis according to the currently available literature for further exploring this association. The present study may be of value for the early diagnosis, pathological grading, targeted therapy and prognostic evaluation of gliomas.
Collapse
Affiliation(s)
- Yuhao Zhang
- Hebei University, School of Medicine, Baoding, Hebei 071000, P.R. China
| | - Xiaomeng Lin
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiuchao Geng
- Hebei University of Chinese Medicine, Faculty of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Liang Shi
- Hebei University, School of Medicine, Baoding, Hebei 071000, P.R. China
| | - Qiang Li
- Hebei University of Chinese Medicine, Faculty of Acupuncture‑Moxibustion and Tuina, Shijiazhuang, Hebei 050200, P.R. China
| | - Fulin Liu
- Office of Academic Research, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Hong Wang
- Hebei University, School of Medicine, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
17
|
The Regulatory Functions of Circular RNAs in Digestive System Cancers. Cancers (Basel) 2020; 12:cancers12030770. [PMID: 32213977 PMCID: PMC7140005 DOI: 10.3390/cancers12030770] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Circular ribonucleic acids (circRNAs), which are a type of covalently closed circular RNA, are receiving increasing attention. An increasing amount of evidence suggests that circRNAs are involved in the biogenesis and development of multiple diseases such as digestive system cancers. Dysregulated circRNAs have been found to act as oncogenes or tumour suppressors in digestive system cancers. Moreover, circRNAs are related to ageing and a wide variety of processes in tumour cells, such as cell apoptosis, invasion, migration, and proliferation. Moreover, circRNAs can perform a remarkable multitude of biological functions, such as regulating splicing or transcription, binding RNA-binding proteins to enable function, acting as microRNA (miRNA) sponges, and undergoing translated into proteins. However, in digestive system cancers, circRNAs function mainly as miRNA sponges. Herein, we summarise the latest research progress on biological functions of circRNAs in digestive system cancers. This review serves as a synopsis of potential therapeutic targets and biological markers for digestive system cancer.
Collapse
|
18
|
Nedoluzhko A, Sharko F, Rbbani MG, Teslyuk A, Konstantinidis I, Fernandes JMO. CircParser: a novel streamlined pipeline for circular RNA structure and host gene prediction in non-model organisms. PeerJ 2020; 8:e8757. [PMID: 32211235 PMCID: PMC7081776 DOI: 10.7717/peerj.8757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/16/2020] [Indexed: 01/07/2023] Open
Abstract
Circular RNAs (circRNAs) are long noncoding RNAs that play a significant role in various biological processes, including embryonic development and stress responses. These regulatory molecules can modulate microRNA activity and are involved in different molecular pathways as indirect regulators of gene expression. Thousands of circRNAs have been described in diverse taxa due to the recent advances in high throughput sequencing technologies, which led to a huge variety of total RNA sequencing being publicly available. A number of circRNA de novo and host gene prediction tools are available to date, but their ability to accurately predict circRNA host genes is limited in the case of low-quality genome assemblies or annotations. Here, we present CircParser, a simple and fast Unix/Linux pipeline that uses the outputs from the most common circular RNAs in silico prediction tools (CIRI, CIRI2, CircExplorer2, find_circ, and circFinder) to annotate circular RNAs, assigning presumptive host genes from local or public databases such as National Center for Biotechnology Information (NCBI). Also, this pipeline can discriminate circular RNAs based on their structural components (exonic, intronic, exon-intronic or intergenic) using a genome annotation file.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Bodø, Norway
| | - Fedor Sharko
- Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russia.,Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia, Russia
| | - Md Golam Rbbani
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Bodø, Norway
| | - Anton Teslyuk
- Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russia
| | | | | |
Collapse
|
19
|
Ferrero G, Licheri N, Coscujuela Tarrero L, De Intinis C, Miano V, Calogero RA, Cordero F, De Bortoli M, Beccuti M. Docker4Circ: A Framework for the Reproducible Characterization of circRNAs from RNA-Seq Data. Int J Mol Sci 2019; 21:ijms21010293. [PMID: 31906249 PMCID: PMC6982331 DOI: 10.3390/ijms21010293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/28/2019] [Indexed: 01/09/2023] Open
Abstract
Recent improvements in cost-effectiveness of high-throughput technologies has allowed RNA sequencing of total transcriptomes suitable for evaluating the expression and regulation of circRNAs, a relatively novel class of transcript isoforms with suggested roles in transcriptional and post-transcriptional gene expression regulation, as well as their possible use as biomarkers, due to their deregulation in various human diseases. A limited number of integrated workflows exists for prediction, characterization, and differential expression analysis of circRNAs, none of them complying with computational reproducibility requirements. We developed Docker4Circ for the complete analysis of circRNAs from RNA-Seq data. Docker4Circ runs a comprehensive analysis of circRNAs in human and model organisms, including: circRNAs prediction; classification and annotation using six public databases; back-splice sequence reconstruction; internal alternative splicing of circularizing exons; alignment-free circRNAs quantification from RNA-Seq reads; and differential expression analysis. Docker4Circ makes circRNAs analysis easier and more accessible thanks to: (i) its R interface; (ii) encapsulation of computational tasks into docker images; (iii) user-friendly Java GUI Interface availability; and (iv) no need of advanced bash scripting skills for correct use. Furthermore, Docker4Circ ensures a reproducible analysis since all its tasks are embedded into a docker image following the guidelines provided by Reproducible Bioinformatics Project.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| | - Nicola Licheri
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| | - Lucia Coscujuela Tarrero
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (L.C.T.); (V.M.)
- Center for Genomic Science, Italian Institute of Technology, 20139 Milan, Italy
| | - Carlo De Intinis
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| | - Valentina Miano
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (L.C.T.); (V.M.)
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Raffaele Adolfo Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Francesca Cordero
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (L.C.T.); (V.M.)
- Correspondence:
| | - Marco Beccuti
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| |
Collapse
|
20
|
Zhao X, Duan X, Fu J, Shao Y, Zhang W, Guo M, Li C. Genome-Wide Identification of Circular RNAs Revealed the Dominant Intergenic Region Circularization Model in Apostichopus japonicus. Front Genet 2019; 10:603. [PMID: 31312211 PMCID: PMC6614181 DOI: 10.3389/fgene.2019.00603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) were recently recognized to act as competing endogenous RNAs and play roles in gene expression regulation. Previous studies in humans and silkworms have shown that circRNAs take part in immune regulation. Here, we conducted coelomocyte circRNA sequencing to explore its immune functions in healthy and skin ulceration syndrome (SUS)-diseased sea cucumbers. A total of 3,592 circRNAs were identified in libraries with diversified circularization patterns compared with animal models. The common intron-pairing-driven circularization models are not popular in sea cucumber genome, which was replaced with intergenic region circularization. The accuracy of these identified circRNAs was further validated by Sanger sequencing and RNase R-treated assays. Expression profile analysis indicated that 117 circRNAs were upregulated and 144 circRNAs were downregulated in SUS-diseased condition, of which 71.6% were intergenic-type circRNAs. The interaction network of differentially expressed circRNAs and microRNAs (miRNAs) was constructed and showed that miR-2008 and miR-31, detected with significantly differential expression in SUS-affected samples in a previous study, were predicted to be regulated by 10 and 11 differentially expressed circRNAs with more than 10 binding sites, respectively. Moreover, seven circRNAs were further validated by quantitative real-time PCR, whose variation trends were consistent with circRNA sequencing. All our results supported that intergenic-type circRNAs might have a dominant function in Apostichopus japonicas immune response by acting as miRNA regulators.
Collapse
Affiliation(s)
- Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Xuemei Duan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Jianping Fu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Meng X, Hu D, Zhang P, Chen Q, Chen M. CircFunBase: a database for functional circular RNAs. Database (Oxford) 2019; 2019:5306167. [PMID: 30715276 PMCID: PMC6360206 DOI: 10.1093/database/baz003] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 01/26/2023]
Abstract
Increasing evidence reveals that circular RNAs (circRNAs) are widespread in eukaryotes and play important roles in diverse biological processes. However, a comprehensive functionally annotated circRNA database is still lacking. CircFunBase is a web-accessible database that aims to provide a high-quality functional circRNA resource including experimentally validated and computationally predicted functions. The current version of CircFunBase documents more than 7000 manually curated functional circRNA entries, mainly including Homo sapiens, Mus musculus etc. CircFunBase provides visualized circRNA-miRNA interaction networks. In addition, a genome browser is provided to visualize the genome context of circRNAs. As a biological information platform for circRNAs, CircFunBase will contribute for circRNA studies and bridge the gap between circRNAs and their functions.
Collapse
Affiliation(s)
- Xianwen Meng
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
- The State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Dahui Hu
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peijing Zhang
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qi Chen
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Zhou J, Ge Y, Hu Y, Rong D, Fu K, Wang H, Cao H, Tang W. Circular RNAs as novel rising stars with huge potentials in development and disease. Cancer Biomark 2018; 22:597-610. [PMID: 29914009 DOI: 10.3233/cbm-181296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyuan Ge
- Department of Neurosurgery, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Hu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dawei Rong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Gu X, Wang G, Shen H, Fei X. Hsa_circ_0033155: A potential novel biomarker for non-small cell lung cancer. Exp Ther Med 2018; 16:3220-3226. [PMID: 30214545 DOI: 10.3892/etm.2018.6565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel type of endogenous RNAs and increasing evidence have uncovered the important role of circRNA in tumor progression; however, the function of circRNAs in non-small cell lung cancer (NSCLC) remains largely unclear. In the present study, it was demonstrated that the expression level of hsa_circ_0033155 was significantly downregulated in NSCLC tissue and the expression of hsa_circ_0033155 correlated with lymphatic metastasis. In order to further investigate the possible role of hsa_circ_0033155 in NSCLC progression, circRNA was overexpressed in NSCLC cells and it was observed that the overexpression of hsa_circ_0033155 significantly decreased cell proliferation, colony formation and migration, and elevated the level of phosphatase and tensin homolog deleted on chromosome 10, a tumor suppressor in many types of tumor. In conclusion, hsa_circ_0033155 may serve as a prospective biomarker for detection and a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaohua Gu
- Department of Respiratory Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Gang Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Hui Shen
- Department of Respiratory Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiaoyun Fei
- Department of Respiratory Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
24
|
Teng H, Mao F, Liang J, Xue M, Wei W, Li X, Zhang K, Feng D, Liu B, Sun Z. Transcriptomic signature associated with carcinogenesis and aggressiveness of papillary thyroid carcinoma. Theranostics 2018; 8:4345-4358. [PMID: 30214625 PMCID: PMC6134936 DOI: 10.7150/thno.26862] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/16/2018] [Indexed: 01/27/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the fastest-growing disease caused by numerous molecular alterations in addition to previously reported DNA mutations. There is a compelling need to identify novel transcriptomic alterations that are associated with the pathogenesis of PTC with potential diagnostic and prognostic implications. Methods: We gathered and compared 242 expression profiles between paired PTC and adjacent normal tissues and identified and validated the coding and long non-coding RNAs (lncRNAs) associated with the extrathyroidal extension (ETE) of 655 PTC patients in two independent cohorts, followed by predicting their interactions with drugs. Co-expression, RNA interaction, Kaplan-Meier survival and multivariate Cox proportional regression analyses were performed to identify dysregulated lncRNAs and genes that correlated with clinical outcomes of PTC. Alternative splicing (AS), RNA circularization, and editing were also compared between transcriptomes to expand the repertoire of molecular alterations in PTC. Results: Numerous genes related to cellular microenvironment and steroid hormone response were associated with the ETE of PTC. Drug susceptibility predictions of the expression signature revealed two highly ranked compounds, 6-bromoindirubin-3'-oxime and lovastatin. Co-expression and RNA interaction analysis revealed the essential role of lncRNAs in PTC pathogenesis by modulating extracellular matrix and cell adhesion. Eight genes and two novel lncRNAs were identified that correlated with the aggressive nature and disease-free survival of PTC. Furthermore, this study provided the transcriptome-wide landscape of circRNAs in PTC and uncovered dissimilar expression profiles among circRNAs originating from the same host gene, suggesting the functional complexity of circRNAs in PTC carcinogenesis. The newly identified AS events in the SERPINA1 and FN1 genes may improve the sensitivity and specificity of these diagnostic biomarkers. Conclusions: Our study uncovered a comprehensive transcriptomic signature associated with the carcinogenesis and aggressive behavior of PTC, as well as presents a catalog of 10 potential biomarkers, which would facilitate PTC prognosis and development of new therapeutic strategies for this cancer.
Collapse
Affiliation(s)
- Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jialong Liang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Meiying Xue
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenqing Wei
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dongdong Feng
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Baoguo Liu
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Gao Y, Zhao F. Computational Strategies for Exploring Circular RNAs. Trends Genet 2018; 34:389-400. [PMID: 29338875 DOI: 10.1016/j.tig.2017.12.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
Recent studies have demonstrated that circular RNAs (circRNAs) are ubiquitous and have diverse functions and mechanisms of biogenesis. In these studies, computational profiling of circRNAs has been prevalently used as an indispensable method to provide high-throughput approaches to detect and analyze circRNAs. However, without an overall understanding of the underlying strategies, these computational methods may not be appropriately selected or used for a specific research purpose, and some misconceptions may result in biases in the analyses. In this review we attempt to illustrate the key steps and summarize tradeoff of different strategies, covering all popular algorithms for circRNA detection and various downstream analyses. We also clarify some common misconceptions and put emphasis on the fields of application for these computational methods.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fangqing Zhao
- Laboratory of Computational genomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Sulaiman SA, Abdul Murad NA, Mohamad Hanif EA, Abu N, Jamal R. Prospective Advances in Circular RNA Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:357-370. [PMID: 30259380 DOI: 10.1007/978-981-13-1426-1_28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
circRNAs have emerged as one of the key regulators in many cellular mechanisms and pathogenesis of diseases. However, with the limited knowledge and current technologies for circRNA investigations, there are several challenges that need to be addressed for. These include challenges in understanding the regulation of circRNA biogenesis, experimental designs, and sample preparations to characterize the circRNAs in diseases as well as the bioinformatics pipelines and algorithms. In this chapter, we discussed the above challenges and possible strategies to overcome those limitations. We also addressed the differences between the existing applications and technologies to study the circRNAs in diseases. By addressing these challenges, further understanding of circRNAs roles and regulations as well as the discovery of novel circRNAs could be achieved.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia.
| | | | - Nadiah Abu
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia.
| | - Rahman Jamal
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Wang J, Samuels DC, Zhao S, Xiang Y, Zhao YY, Guo Y. Current Research on Non-Coding Ribonucleic Acid (RNA). Genes (Basel) 2017; 8:366. [PMID: 29206165 PMCID: PMC5748684 DOI: 10.3390/genes8120366] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN 37232, USA.
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN 37232, USA.
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Yan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87102, USA.
| |
Collapse
|