1
|
van Geest G, Haefliger Y, Zahn-Zabal M, Palagi PM. Using Glittr.org to find, compare and re-use online materials for training and education. PLoS One 2024; 19:e0308729. [PMID: 39637085 PMCID: PMC11620569 DOI: 10.1371/journal.pone.0308729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
A wealth of excellent training and educational materials for the computational life sciences are scattered around the Internet, but they can be hard to find. Many materials reside in public Git repositories that are hosted on platforms such as GitHub and GitLab. Glittr.org is a manually curated database of Git repositories, which enables users to find educational materials that would otherwise be hard to identify. With the application, users can search and compare educational materials based on topic and author, but also on engagement metrics such as stargazers (bookmarks) and recency (days since last commit). Glittr.org currently contains 664 entries, which are assigned to six different categories within the domain of computational life sciences. By analysing the database, we reveal insights in the availability of materials per topic, collaboration patterns of developers, and licensing practices. This knowledge helps to understand in which areas open educational materials are scant, the importance of Git for collaboration on educational materials and how licensing can be improved to enhance sharing and reuse. Taken together, we show that Glittr.org contains a wealth of connected and openly available metadata. Therefore, it enhances adherence to the FAIR (Findable, Accessible, Interoperable, Reusable) principles, which benefits learners, teachers and trainers in the entire life sciences community and beyond.
Collapse
Affiliation(s)
- Geert van Geest
- Swiss Institute of Bioinformatics, Quartier Sorge—Bâtiment Amphipôle, Lausanne, Switzerland
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Yann Haefliger
- Swiss Institute of Bioinformatics, Quartier Sorge—Bâtiment Amphipôle, Lausanne, Switzerland
| | - Monique Zahn-Zabal
- Swiss Institute of Bioinformatics, Quartier Sorge—Bâtiment Amphipôle, Lausanne, Switzerland
| | - Patricia M. Palagi
- Swiss Institute of Bioinformatics, Quartier Sorge—Bâtiment Amphipôle, Lausanne, Switzerland
| |
Collapse
|
2
|
Peeters LM. The arisal of data spaces: why I am excited and worried. Front Immunol 2024; 15:1461361. [PMID: 39502694 PMCID: PMC11534855 DOI: 10.3389/fimmu.2024.1461361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
This paper explores the significant role of real-world data (RWD) in advancing our understanding and management of Multiple Sclerosis (MS). RWD has proven invaluable in MS research and care, offering insights from larger and diverse patient populations. A key focus of the paper is the European Health Data Space (EHDS), a significant development that promises to change how healthcare data is managed across Europe. This initiative is particularly relevant to the MS community. The paper highlights various data initiatives, discussing their importance for those affected by MS. Despite the potential benefits, there are challenges and concerns, especially about ensuring that the growth of various data platforms remains beneficial for MS patients. The paper suggests practical actions for the global MS community to consider, aimed at optimizing the use of RWD. The emphasis of this discussion is on the secondary use of health data, particularly in the European context. The content is based on the author's own experiences and interpretations, offering a personal yet informed view on using RWD to improve MS research and patient care.
Collapse
Affiliation(s)
- Liesbet M. Peeters
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
- Data Science Institute (DSI), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
3
|
Martens M, Stierum R, Schymanski EL, Evelo CT, Aalizadeh R, Aladjov H, Arturi K, Audouze K, Babica P, Berka K, Bessems J, Blaha L, Bolton EE, Cases M, Damalas DΕ, Dave K, Dilger M, Exner T, Geerke DP, Grafström R, Gray A, Hancock JM, Hollert H, Jeliazkova N, Jennen D, Jourdan F, Kahlem P, Klanova J, Kleinjans J, Kondic T, Kone B, Lynch I, Maran U, Martinez Cuesta S, Ménager H, Neumann S, Nymark P, Oberacher H, Ramirez N, Remy S, Rocca-Serra P, Salek RM, Sallach B, Sansone SA, Sanz F, Sarimveis H, Sarntivijai S, Schulze T, Slobodnik J, Spjuth O, Tedds J, Thomaidis N, Weber RJ, van Westen GJ, Wheelock CE, Williams AJ, Witters H, Zdrazil B, Županič A, Willighagen EL. ELIXIR and Toxicology: a community in development. F1000Res 2023; 10:ELIXIR-1129. [PMID: 37842337 PMCID: PMC10568213 DOI: 10.12688/f1000research.74502.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 02/01/2025] Open
Abstract
Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.
Collapse
Affiliation(s)
- Marvin Martens
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Rob Stierum
- Risk Analysis for Products In Development (RAPID), Netherlands Organisation for applied scientific research TNO, Utrecht, 3584 CB, The Netherlands
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6229 EN, The Netherlands
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Hristo Aladjov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Kasia Arturi
- Department Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600, Switzerland
| | | | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Palacky University Olomouc, Olomouc, 77146, Czech Republic
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Dimitrios Ε. Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Kirtan Dave
- School of Science, GSFC University, Gujarat, 391750, India
| | - Marco Dilger
- Forschungs- und Beratungsinstitut Gefahrstoffe (FoBiG) GmbH, Freiburg im Breisgau, 79106, Germany
| | | | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology, Vrije Universiteit, Amsterdam, 1081 HZ, The Netherlands
| | - Roland Grafström
- Department of Toxicology, Misvik Biology, Turku, 20520, Finland
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Alasdair Gray
- Department of Computer Science, Heriot-Watt University, Edinburgh, UK
| | | | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Goethe-University, Frankfurt, D-60438, Germany
| | | | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Fabien Jourdan
- MetaboHUB, French metabolomics infrastructure in Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Todor Kondic
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Boï Kone
- Faculty of Pharmacy, Malaria Research and Training Center, Bamako, BP:1805, Mali
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu, 50411, Estonia
| | | | - Hervé Ménager
- Institut Français de Bioinformatique, Evry, F-91000, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, F-75015, France
| | - Steffen Neumann
- Research group Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Noelia Ramirez
- Institut d'Investigacio Sanitaria Pere Virgili-Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | | | - Philippe Rocca-Serra
- Data Readiness Group, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Reza M. Salek
- International Agency for Research on Cancer, World Health Organisation, Lyon, 69372, France
| | - Brett Sallach
- Department of Environment and Geography, University of York, UK, York, YO10 5NG, UK
| | | | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | | | | | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany
| | | | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, SE-75124, Sweden
| | - Jonathan Tedds
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Ralf J.M. Weber
- School of Biosciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Gerard J.P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden, 2333 CC, The Netherlands
| | - Craig E. Wheelock
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-141-86, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Antony J. Williams
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Barbara Zdrazil
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Anže Županič
- Department Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
4
|
Martens M, Stierum R, Schymanski EL, Evelo CT, Aalizadeh R, Aladjov H, Arturi K, Audouze K, Babica P, Berka K, Bessems J, Blaha L, Bolton EE, Cases M, Damalas DΕ, Dave K, Dilger M, Exner T, Geerke DP, Grafström R, Gray A, Hancock JM, Hollert H, Jeliazkova N, Jennen D, Jourdan F, Kahlem P, Klanova J, Kleinjans J, Kondic T, Kone B, Lynch I, Maran U, Martinez Cuesta S, Ménager H, Neumann S, Nymark P, Oberacher H, Ramirez N, Remy S, Rocca-Serra P, Salek RM, Sallach B, Sansone SA, Sanz F, Sarimveis H, Sarntivijai S, Schulze T, Slobodnik J, Spjuth O, Tedds J, Thomaidis N, Weber RJ, van Westen GJ, Wheelock CE, Williams AJ, Witters H, Zdrazil B, Županič A, Willighagen EL. ELIXIR and Toxicology: a community in development. F1000Res 2023; 10:ELIXIR-1129. [PMID: 37842337 PMCID: PMC10568213 DOI: 10.12688/f1000research.74502.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.
Collapse
Affiliation(s)
- Marvin Martens
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Rob Stierum
- Risk Analysis for Products In Development (RAPID), Netherlands Organisation for applied scientific research TNO, Utrecht, 3584 CB, The Netherlands
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6229 EN, The Netherlands
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Hristo Aladjov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Kasia Arturi
- Department Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600, Switzerland
| | | | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Palacky University Olomouc, Olomouc, 77146, Czech Republic
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Dimitrios Ε. Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Kirtan Dave
- School of Science, GSFC University, Gujarat, 391750, India
| | - Marco Dilger
- Forschungs- und Beratungsinstitut Gefahrstoffe (FoBiG) GmbH, Freiburg im Breisgau, 79106, Germany
| | | | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology, Vrije Universiteit, Amsterdam, 1081 HZ, The Netherlands
| | - Roland Grafström
- Department of Toxicology, Misvik Biology, Turku, 20520, Finland
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Alasdair Gray
- Department of Computer Science, Heriot-Watt University, Edinburgh, UK
| | | | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Goethe-University, Frankfurt, D-60438, Germany
| | | | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Fabien Jourdan
- MetaboHUB, French metabolomics infrastructure in Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Todor Kondic
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Boï Kone
- Faculty of Pharmacy, Malaria Research and Training Center, Bamako, BP:1805, Mali
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu, 50411, Estonia
| | | | - Hervé Ménager
- Institut Français de Bioinformatique, Evry, F-91000, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, F-75015, France
| | - Steffen Neumann
- Research group Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Noelia Ramirez
- Institut d'Investigacio Sanitaria Pere Virgili-Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | | | - Philippe Rocca-Serra
- Data Readiness Group, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Reza M. Salek
- International Agency for Research on Cancer, World Health Organisation, Lyon, 69372, France
| | - Brett Sallach
- Department of Environment and Geography, University of York, UK, York, YO10 5NG, UK
| | | | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | | | | | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany
| | | | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, SE-75124, Sweden
| | - Jonathan Tedds
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Ralf J.M. Weber
- School of Biosciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Gerard J.P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden, 2333 CC, The Netherlands
| | - Craig E. Wheelock
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-141-86, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Antony J. Williams
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Barbara Zdrazil
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Anže Županič
- Department Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
5
|
Castro LJ, Palagi PM, Beard N, Attwood TK, Brazas MD. Bioschemas training profiles: A set of specifications for standardizing training information to facilitate the discovery of training programs and resources. PLoS Comput Biol 2023; 19:e1011120. [PMID: 37319143 DOI: 10.1371/journal.pcbi.1011120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Stand-alone life science training events and e-learning solutions are among the most sought-after modes of training because they address both point-of-need learning and the limited timeframes available for "upskilling." Yet, finding relevant life sciences training courses and materials is challenging because such resources are not marked up for internet searches in a consistent way. This absence of markup standards to facilitate discovery, re-use, and aggregation of training resources limits their usefulness and knowledge translation potential. Through a joint effort between the Global Organisation for Bioinformatics Learning, Education and Training (GOBLET), the Bioschemas Training community, and the ELIXIR FAIR Training Focus Group, a set of Bioschemas Training profiles has been developed, published, and implemented for life sciences training courses and materials. Here, we describe our development approach and methods, which were based on the Bioschemas model, and present the results for the 3 Bioschemas Training profiles: TrainingMaterial, Course, and CourseInstance. Several implementation challenges were encountered, which we discuss alongside potential solutions. Over time, continued implementation of these Bioschemas Training profiles by training providers will obviate the barriers to skill development, facilitating both the discovery of relevant training events to meet individuals' learning needs, and the discovery and re-use of training and instructional materials.
Collapse
Affiliation(s)
| | | | - Niall Beard
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| | - Teresa K Attwood
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
6
|
Bacall F, Apaolaza A, Andrabi M, Child C, Goble C, Sand O, Botzki A. Making Bioinformatics Training Events and Material More Discoverable Using TeSS, the ELIXIR Training Portal. Curr Protoc 2023; 3:e682. [PMID: 36809564 DOI: 10.1002/cpz1.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Many trainers and organizations are passionate about sharing their training material. Sharing training material has several benefits, such as providing a record of recognition as an author, offering inspiration to other trainers, enabling researchers to discover training resources for their personal learning path, and improving the training resource landscape using data-driven gap analysis from the bioinformatics community. In this article, we present a series of protocols for using the ELIXIR online training registry Training eSupport System (TeSS). TeSS provides a one-stop shop for trainers and trainees to discover online information and content, including training materials, events, and interactive tutorials. For trainees, we provide protocols for registering and logging in and for searching and filtering content. For trainers and organizations, we also show how to manually or automatically register training events and materials. Following these protocols will contribute to promoting training events and add to a growing catalog of materials. This will concomitantly increase the FAIRness of training materials and events. Training registries like TeSS use a scraping mechanism to aggregate training resources from many providers when they have been annotated using Bioschemas specifications. Finally, we describe how to enrich training resources to allow for more efficient sharing of the structured metadata, such as prerequisites, target audience, and learning outcomes using Bioschemas specification. As increasing training events and material are aggregated in TeSS, searching the registry for specific events and materials becomes crucial. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Searching for training events and materials in TeSS Support Protocol: Integrating TeSS widgets on your website Basic Protocol 2: Logging in to TeSS using an institutional account Alternate Protocol: Creating and logging in to a TeSS account Basic Protocol 3: Manual registration of training events in TeSS Basic Protocol 4: Manual registration of training materials in TeSS Basic Protocol 5: Registration of a content provider in TeSS Basic Protocol 6: Automated harvesting of training events and materials in TeSS.
Collapse
Affiliation(s)
- Finn Bacall
- Department of Computer Science, University of Manchester, Manchester, United Kingdom.,ELIXIR-UK, Norwich, United Kingdom
| | - Aitor Apaolaza
- Department of Computer Science, University of Manchester, Manchester, United Kingdom.,ELIXIR-UK, Norwich, United Kingdom
| | - Munazah Andrabi
- Department of Computer Science, University of Manchester, Manchester, United Kingdom.,ELIXIR-UK, Norwich, United Kingdom
| | - Chris Child
- Department of Computer Science, University of Manchester, Manchester, United Kingdom.,ELIXIR-UK, Norwich, United Kingdom
| | - Carole Goble
- Department of Computer Science, University of Manchester, Manchester, United Kingdom.,ELIXIR-UK, Norwich, United Kingdom
| | - Olivier Sand
- Institut Français de Bioinformatique, Villeneuve d'Ascq, France.,ELIXIR-FR, Institut Français de Bioinformatique, Évry, France
| | - Alexander Botzki
- VIB Technology Training, Vlaams Instituut voor Biotechnologie, Ghent, Belgium.,ELIXIR-BE, VIB, Ghent, Belgium
| |
Collapse
|
7
|
Martins dos Santos V, Anton M, Szomolay B, Ostaszewski M, Arts I, Benfeitas R, Dominguez Del Angel V, Domínguez-Romero E, Ferk P, Fey D, Goble C, Golebiewski M, Gruden K, Heil KF, Hermjakob H, Kahlem P, Klapa MI, Koehorst J, Kolodkin A, Kutmon M, Leskošek B, Moretti S, Müller W, Pagni M, Rezen T, Rocha M, Rozman D, Šafránek D, T. Scott W, Sheriff RSM, Suarez Diez M, Van Steen K, Westerhoff HV, Wittig U, Wolstencroft K, Zupanic A, Evelo CT, Hancock JM. Systems Biology in ELIXIR: modelling in the spotlight. F1000Res 2022; 11:ELIXIR-1265. [PMID: 36742342 PMCID: PMC9871403 DOI: 10.12688/f1000research.126734.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.
Collapse
Affiliation(s)
- Vitor Martins dos Santos
- Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Mihail Anton
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, SE-41258, Sweden
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Ilja Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | - Polonca Ferk
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, Centre ELIXIR-SI, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Carole Goble
- Department of Computer Science, The University of Manchester, Manchester, M13 9PL, UK
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, SI-1000, Slovenia
| | | | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Maria I. Klapa
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology - Hellas (FORTH/ICE-HT), Patras, 26504, Greece
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
| | - Alexey Kolodkin
- Competence Center for Methodology and Statistics; Transversal Translational Medicine, Translational Medicine Operations Hub, Luxembourg Institute of Health, Strassen, L-1445, Luxembourg
- ISBE.NL, VU University of Amsterdam, Amsterdam, The Netherlands
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Brane Leskošek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, Centre ELIXIR-SI, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | | | - Wolfgang Müller
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Marco Pagni
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tadeja Rezen
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Damjana Rozman
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - David Šafránek
- Faculty of Informatics, Masaryk University, Brno, 602 00, Czech Republic
| | - William T. Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
- UNLOCK, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Rahuman S. Malik Sheriff
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Maria Suarez Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- BIO3 - Systems Genetics, GIGA-R Medical Genomics, University of Liege, Liege, 4000, Belgium
| | | | - Ulrike Wittig
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Katherine Wolstencroft
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, SI-1000, Slovenia
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - John M. Hancock
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
8
|
Martins dos Santos V, Anton M, Szomolay B, Ostaszewski M, Arts I, Benfeitas R, Dominguez Del Angel V, Domínguez-Romero E, Ferk P, Fey D, Goble C, Golebiewski M, Gruden K, Heil KF, Hermjakob H, Kahlem P, Klapa MI, Koehorst J, Kolodkin A, Kutmon M, Leskošek B, Moretti S, Müller W, Pagni M, Rezen T, Rocha M, Rozman D, Šafránek D, T. Scott W, Sheriff RSM, Suarez Diez M, Van Steen K, Westerhoff HV, Wittig U, Wolstencroft K, Zupanic A, Evelo CT, Hancock JM. Systems Biology in ELIXIR: modelling in the spotlight. F1000Res 2022; 11:ELIXIR-1265. [PMID: 36742342 PMCID: PMC9871403 DOI: 10.12688/f1000research.126734.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.
Collapse
Affiliation(s)
- Vitor Martins dos Santos
- Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Mihail Anton
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, SE-41258, Sweden
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Ilja Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | - Polonca Ferk
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, Centre ELIXIR-SI, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Carole Goble
- Department of Computer Science, The University of Manchester, Manchester, M13 9PL, UK
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, SI-1000, Slovenia
| | | | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Maria I. Klapa
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology - Hellas (FORTH/ICE-HT), Patras, 26504, Greece
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
| | - Alexey Kolodkin
- Competence Center for Methodology and Statistics; Transversal Translational Medicine, Translational Medicine Operations Hub, Luxembourg Institute of Health, Strassen, L-1445, Luxembourg
- ISBE.NL, VU University of Amsterdam, Amsterdam, The Netherlands
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Brane Leskošek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, Centre ELIXIR-SI, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | | | - Wolfgang Müller
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Marco Pagni
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tadeja Rezen
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Damjana Rozman
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - David Šafránek
- Faculty of Informatics, Masaryk University, Brno, 602 00, Czech Republic
| | - William T. Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
- UNLOCK, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Rahuman S. Malik Sheriff
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Maria Suarez Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- BIO3 - Systems Genetics, GIGA-R Medical Genomics, University of Liege, Liege, 4000, Belgium
| | | | - Ulrike Wittig
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Katherine Wolstencroft
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, SI-1000, Slovenia
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - John M. Hancock
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
9
|
Strömert P, Hunold J, Castro A, Neumann S, Koepler O. Ontologies4Chem: the landscape of ontologies in chemistry. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
For a long time, databases such as CAS, Reaxys, PubChem or ChemSpider mostly rely on unique numerical identifiers or chemical structure identifiers like InChI, SMILES or others to link data across heterogeneous data sources. The retrospective processing of information and fragmented data from text publications to maintain these databases is a cumbersome process. Ontologies are a holistic approach to semantically describe data, information and knowledge of a domain. They provide terms, relations and logic to semantically annotate and link data building knowledge graphs. The application of standard taxonomies and vocabularies from the very beginning of data generation and along research workflows in electronic lab notebooks (ELNs), software tools, and their final publication in data repositories create FAIR data straightforwardly. Thus a proper semantic description of an investigation and the why, how, where, when, and by whom data was produced in conjunction with the description and representation of research data is a natural outcome in contrast to the retrospective processing of research publications as we know it. In this work we provide an overview of ontologies in chemistry suitable to represent concepts of research and research data. These ontologies are evaluated against several criteria derived from the FAIR data principles and their possible application in the digitisation of research data management workflows.
Collapse
Affiliation(s)
- Philip Strömert
- TIB – Leibniz Information Centre for Science and Technology , Welfengarten 1 B, 30167 Hannover , Germany
| | - Johannes Hunold
- TIB – Leibniz Information Centre for Science and Technology , Welfengarten 1 B, 30167 Hannover , Germany
| | - André Castro
- TIB – Leibniz Information Centre for Science and Technology , Welfengarten 1 B, 30167 Hannover , Germany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry , Weinberg 3 , 06120 Halle , Germany
| | - Oliver Koepler
- TIB – Leibniz Information Centre for Science and Technology , Welfengarten 1 B, 30167 Hannover , Germany
| |
Collapse
|
10
|
Thurlow KE, Lovering RC, De Miranda Pinheiro S. Student biocuration projects as a learning environment. F1000Res 2021; 10:1023. [PMID: 35211294 PMCID: PMC8831850 DOI: 10.12688/f1000research.72808.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Bioinformatics is becoming an essential tool for the majority of biological and biomedical researchers. Although bioinformatics data is exploited by academic and industrial researchers, limited focus is on teaching this area to undergraduates, postgraduates and senior scientists. Many scientists are developing their own expertise without formal training and often without appreciating the source of the data they are reliant upon. Some universities do provide courses on a variety of bioinformatics resources and tools, a few also provide biocuration projects, during which students submit data to annotation resources. Methods: To assess the usefulness and enjoyability of annotation projects a survey was sent to University College London (UCL) students who have undertaken Gene Ontology biocuration projects. Results: Analysis of survey responses suggest that these projects provide students with an opportunity not only to learn about bioinformatics resources but also to improve their literature analysis, presentation and writing skills. Conclusion: Biocuration student projects provide valuable annotations as well as enabling students to develop a variety of skills relevant to their future careers. It is also hoped that, as future scientists, these students will critically assess their own manuscripts and ensure that these are written with the biocurators of the future in mind.
Collapse
Affiliation(s)
- Katherine E. Thurlow
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Ruth C. Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Sandra De Miranda Pinheiro
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| |
Collapse
|
11
|
Thurlow KE, Lovering RC, De Miranda Pinheiro S. Student biocuration projects as a learning environment. F1000Res 2021; 10:1023. [PMID: 35211294 PMCID: PMC8831850 DOI: 10.12688/f1000research.72808.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 08/23/2024] Open
Abstract
Background: Bioinformatics is becoming an essential tool for the majority of biological and biomedical researchers. Although bioinformatics data is exploited by academic and industrial researchers, limited focus is on teaching this area to undergraduates, postgraduates and senior scientists. Many scientists are developing their own expertise without formal training and often without appreciating the source of the data they are reliant upon. Some universities do provide courses on a variety of bioinformatics resources and tools, a few also provide biocuration projects, during which students submit data to annotation resources. Methods: To assess the usefulness and enjoyability of annotation projects a survey was sent to University College London (UCL) students who have undertaken Gene Ontology biocuration projects. Results: Analysis of survey responses suggest that these projects provide students with an opportunity not only to learn about bioinformatics resources but also to improve their literature analysis, presentation and writing skills. Conclusion: Biocuration student projects provide valuable annotations as well as enabling students to develop a variety of skills relevant to their future careers. It is also hoped that, as future scientists, these students will critically assess their own manuscripts and ensure that these are written with the biocurators of the future in mind.
Collapse
Affiliation(s)
- Katherine E. Thurlow
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Ruth C. Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Sandra De Miranda Pinheiro
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| |
Collapse
|
12
|
Harrow J, Drysdale R, Smith A, Repo S, Lanfear J, Blomberg N. ELIXIR: Providing a Sustainable Infrastructure for Life Science Data at European Scale. Bioinformatics 2021; 37:2506-2511. [PMID: 34175941 PMCID: PMC8388016 DOI: 10.1093/bioinformatics/btab481] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 06/25/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jennifer Harrow
- ELIXIR Hub, South Building, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Rachel Drysdale
- ELIXIR Hub, South Building, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Andrew Smith
- ELIXIR Hub, South Building, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Susanna Repo
- ELIXIR Hub, South Building, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jerry Lanfear
- ELIXIR Hub, South Building, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Niklas Blomberg
- ELIXIR Hub, South Building, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
13
|
Schwämmle V, Harrow J, Ienasescu H. Proteomics Software in bio.tools: Coverage and Annotations. J Proteome Res 2021; 20:1821-1825. [PMID: 33720718 DOI: 10.1021/acs.jproteome.0c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The large diversity of experimental methods in proteomics as well as their increasing usage across biological and clinical research has led to the development of hundreds if not thousands of software tools to aid in the analysis and interpretation of the resulting data. Detailed information about these tools needs to be collected, categorized, and validated to guarantee their optimal utilization. A tools registry like bio.tools enables users and developers to identify new tools with more powerful algorithms or to find tools with similar functions for comparison. Here we present the content of the registry, which now comprises more than 1000 proteomics tool entries. Furthermore, we discuss future applications and engagement with other community efforts resulting in a high impact on the bioinformatics landscape.
Collapse
Affiliation(s)
- Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jennifer Harrow
- ELIXIR-Hub, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Hans Ienasescu
- National Life Science Supercomputing Center, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|