1
|
Lister TM, Roberts GW, Hossack EJ, Zhao F, Burke AJ, Johannissen LO, Hardy FJ, Millman AAV, Leys D, Larrosa I, Green AP. Engineered enzymes for enantioselective nucleophilic aromatic substitutions. Nature 2025; 639:375-381. [PMID: 39814071 PMCID: PMC11903332 DOI: 10.1038/s41586-025-08611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Nucleophilic aromatic substitutions (SNAr) are among the most widely used processes in the pharmaceutical and agrochemical industries1-4, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SNAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SNAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts5-11. Here we establish a biocatalytic approach to stereoselective SNAr chemistry by uncovering promiscuous SNAr activity in a designed enzyme featuring an activated arginine12. This activity was optimized over successive rounds of directed evolution to afford an engineered biocatalyst, SNAr1.3, that is 160-fold more efficient than the parent and promotes the coupling of electron-deficient arenes with carbon nucleophiles with near-perfect stereocontrol (>99% enantiomeric excess (e.e.)). SNAr1.3 can operate at a rate of 0.15 s-1, perform more than 4,000 turnovers and can accept a broad range of electrophilic and nucleophilic coupling partners, including those that allow construction of challenging 1,1-diaryl quaternary stereocentres. Biochemical, structural and computational studies provide insights into the catalytic mechanism of SNAr1.3, including the emergence of a halide binding pocket shaped by key catalytic residues Arg124 and Asp125. This study brings a landmark synthetic reaction into the realm of biocatalysis to provide an efficient and versatile platform for catalytic SNAr chemistry.
Collapse
Affiliation(s)
- Thomas M Lister
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - George W Roberts
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Euan J Hossack
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Fei Zhao
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Florence J Hardy
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David Leys
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Igor Larrosa
- Department of Chemistry, The University of Manchester, Manchester, UK.
| | - Anthony P Green
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
- Department of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Xue J, Chen H, Wang Y, Jiang Y. Structural mechanisms of human sodium-coupled high-affinity choline transporter CHT1. Cell Discov 2024; 10:116. [PMID: 39587078 PMCID: PMC11589582 DOI: 10.1038/s41421-024-00731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 11/27/2024] Open
Abstract
Mammalian sodium-coupled high-affinity choline transporter CHT1 uptakes choline in cholinergic neurons for acetylcholine synthesis and plays a critical role in cholinergic neurotransmission. Here, we present the high-resolution cryo-EM structures of human CHT1 in apo, substrate- and ion-bound, hemicholinium-3-inhibited, and ML352-inhibited states. These structures represent three distinct conformational states, elucidating the structural basis of the CHT1-mediated choline uptake mechanism. Three ion-binding sites, two for Na+ and one for Cl-, are unambiguously defined in the structures, demonstrating that both ions are indispensable cofactors for high-affinity choline-binding and are likely transported together with the substrate in a 2:1:1 stoichiometry. The two inhibitor-bound CHT1 structures reveal two distinct inhibitory mechanisms and provide a potential structural platform for designing therapeutic drugs to manipulate cholinergic neuron activity. Combined with the functional analysis, this study provides a comprehensive view of the structural mechanisms underlying substrate specificity, substrate/ion co-transport, and drug inhibition of a physiologically important symporter.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Su CC, Zhang Z, Lyu M, Cui M, Yu EW. Cryo-EM structures of the human band 3 transporter indicate a transport mechanism involving the coupled movement of chloride and bicarbonate ions. PLoS Biol 2024; 22:e3002719. [PMID: 39167625 PMCID: PMC11338459 DOI: 10.1371/journal.pbio.3002719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/20/2024] [Indexed: 08/23/2024] Open
Abstract
The band 3 transporter is a critical integral membrane protein of the red blood cell (RBC), as it is responsible for catalyzing the exchange of bicarbonate and chloride anions across the plasma membrane. To elucidate the structural mechanism of the band 3 transporter, detergent solubilized human ghost membrane reconstituted in nanodiscs was applied to a cryo-EM holey carbon grid to define its composition. With this approach, we identified and determined structural information of the human band 3 transporter. Here, we present 5 different cryo-EM structures of the transmembrane domain of dimeric band 3, either alone or bound with chloride or bicarbonate. Interestingly, we observed that human band 3 can form both symmetric and asymmetric dimers with a different combination of outward-facing (OF) and inward-facing (IF) states. These structures also allow us to obtain the first model of a human band 3 molecule at the IF conformation. Based on the structural data of these dimers, we propose a model of ion transport that is in favor of the elevator-type mechanism.
Collapse
Affiliation(s)
- Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
4
|
Jordan J, Gibb CL, Tran T, Yao W, Rose A, Mague JT, Easson MW, Gibb BC. Anion Binding to Ammonium and Guanidinium Hosts: Implications for the Reverse Hofmeister Effects Induced by Lysine and Arginine Residues. J Org Chem 2024; 89:6877-6891. [PMID: 38662908 PMCID: PMC11110012 DOI: 10.1021/acs.joc.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.
Collapse
Affiliation(s)
- Jacobs
H. Jordan
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Corinne L.D. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thien Tran
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Austin Rose
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Michael W. Easson
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
5
|
Sawyer TK, Aral E, Staros JV, Bobst CE, Garman SC. Human Saposin B Ligand Binding and Presentation to α-Galactosidase A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.584535. [PMID: 38617236 PMCID: PMC11014568 DOI: 10.1101/2024.04.04.584535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sphingolipid activator protein B (saposin B; SapB) is an essential activator of globotriaosylceramide (Gb3) catabolism by α-galactosidase A. However, the manner by which SapB stimulates α-galactosidase A activity remains unknown. To uncover the molecular mechanism of SapB presenting Gb3 to α-galactosidase A, we subjected the fluorescent substrate globotriaosylceramide-nitrobenzoxidazole (Gb3-NBD) to a series of biochemical and structural assays involving SapB. First, we showed that SapB stably binds Gb3-NBD using a fluorescence equilibrium binding assay, isolates Gb3-NBD from micelles, and facilitates α-galactosidase A cleavage of Gb3-NBD in vitro. Second, we crystallized SapB in the presence of Gb3-NBD and validated the ligand-bound assembly. Third, we captured transient interactions between SapB and α-galactosidase A by chemical cross-linking. Finally, we determined the crystal structure of SapB bound to α-galactosidase A. These findings establish general principles for molecular recognition in saposin:hydrolase complexes and highlight the utility of NBD reporter lipids in saposin biochemistry and structural biology.
Collapse
Affiliation(s)
- Thomas K Sawyer
- Department of Biochemistry & Molecular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Program in Molecular & Cellular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Efecan Aral
- Department of Biochemistry & Molecular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Program in Molecular & Cellular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - James V Staros
- Department of Biochemistry & Molecular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Cedric E Bobst
- Mass Spectrometry Core Facility, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Scott C Garman
- Department of Biochemistry & Molecular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Program in Molecular & Cellular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
6
|
Phan LX, Chamorro VC, Martinez-Seara H, Crain J, Sansom MSP, Tucker SJ. Influence of electronic polarization on the binding of anions to a chloride-pumping rhodopsin. Biophys J 2023; 122:1548-1556. [PMID: 36945777 PMCID: PMC10147828 DOI: 10.1016/j.bpj.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
The functional properties of some biological ion channels and membrane transport proteins are proposed to exploit anion-hydrophobic interactions. Here, we investigate a chloride-pumping rhodopsin as an example of a membrane protein known to contain a defined anion binding site composed predominantly of hydrophobic residues. Using molecular dynamics simulations, we explore Cl- binding to this hydrophobic site and compare the dynamics arising when electronic polarization is neglected (CHARMM36 [c36] fixed-charge force field), included implicitly (via the prosECCo force field), or included explicitly (through the polarizable force field, AMOEBA). Free energy landscapes of Cl- moving out of the binding site and into bulk solution demonstrate that the inclusion of polarization results in stronger ion binding and a second metastable binding site in chloride-pumping rhodopsin. Simulations focused on this hydrophobic binding site also indicate longer binding durations and closer ion proximity when polarization is included. Furthermore, simulations reveal that Cl- within this binding site interacts with an adjacent loop to facilitate rebinding events that are not observed when polarization is neglected. These results demonstrate how the inclusion of polarization can influence the behavior of anions within protein binding sites and can yield results comparable with more accurate and computationally demanding methods.
Collapse
Affiliation(s)
- Linda X Phan
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Victor Cruces Chamorro
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Jason Crain
- Department of Biochemistry, University of Oxford, Oxford, UK; IBM Research Europe, Hartree Centre, Daresbury, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Haas R, Nikel PI. Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism. Trends Biotechnol 2023; 41:27-45. [PMID: 35786519 DOI: 10.1016/j.tibtech.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
The relatively narrow spectrum of chemical elements within the microbial 'biochemical palate' limits the reach of biotechnology, because several added-value compounds can only be produced with traditional organic chemistry. Synthetic biology offers enabling tools to tackle this issue by facilitating 'biologization' of non-canonical chemical atoms. The interplay between xenobiology and synthetic metabolism multiplies routes for incorporating nonbiological atoms into engineered microbes. In this review, we survey natural assimilation routes for elements beyond the essential biology atoms [i.e., carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S)], discussing how these mechanisms could be repurposed for biotechnology. Furthermore, we propose a computational framework to identify chemical elements amenable to biologization, ranking reactions suitable to build synthetic metabolism. When combined and deployed in robust microbial hosts, these approaches will offer sustainable alternatives for smart chemical production.
Collapse
Affiliation(s)
- Robert Haas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
A Structure-Based Mechanism for the Denaturing Action of Urea, Guanidinium Ion and Thiocyanate Ion. BIOLOGY 2022; 11:biology11121764. [PMID: 36552273 PMCID: PMC9775367 DOI: 10.3390/biology11121764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
An exhaustive analysis of all the protein structures deposited in the Protein Data Bank, here performed, has allowed the identification of hundredths of protein-bound urea molecules and the structural characterization of such binding sites. It emerged that, even though urea molecules are largely involved in hydrogen bonds with both backbone and side chains, they are also able to make van der Waals contacts with nonpolar moieties. As similar findings have also been previously reported for guanidinium and thiocyanate, this observation suggests that promiscuity is a general property of protein denaturants. Present data provide strong support for a mechanism based on the protein-denaturant direct interactions with a denaturant binding model to equal and independent sites. In this general framework, our investigations also highlight some interesting insights into the different denaturing power of urea compared to guanidinium/thiocyanate.
Collapse
|
9
|
Siderophore Synthesis Ability of the Nitrogen-Fixing Bacterium (NFB) GXGL-4A is Regulated at the Transcriptional Level by a Transcriptional Factor (trX) and an Aminomethyltransferase-Encoding Gene (amt). Curr Microbiol 2022; 79:369. [PMID: 36253498 DOI: 10.1007/s00284-022-03080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
Abstract
Kosakonia radicincitans GXGL-4A, a gram-negative nitrogen-fixing (NF) bacterial strain is coated with a thick capsulatus on the surface of cell wall, which becomes a physical barrier for exogenous DNA to enter the cell, so the operation of genetic transformation is difficult. In this study, an optimized Tn5 transposon mutagenesis system was established by using a high osmotic HO-1 medium combined with the electroporation transformation. Eventually, a mutant library containing a total of 1633 Tn5 insertional mutants were established. Of these mutants, the mutants M81 and M107 were found to have an enhanced capability to synthesize siderophore through the CAS agar plate assay and the spectrophotometric determination. The bacterial cells of two mutants were applied in cucumber growth-promoting experiment. Cucumber seedlings treated with M81 and M107 cells had a significant increase in biomass including seedling height, seedling fresh weight, root fresh weight, and root length. The whole genome sequencing of the mutants M81 and M107 showed that the integration sites of Tn5 transposon element were located in MmyB-like helix-turn-helix transcription regulator (locus tag: A3780_19720, trX) and aminomethyltransferase-encoding genes (locus tag: A3780_01680, amt) in the genome of GXGL-4A, respectively. The ability of siderophore synthesis of the target mutants was improved by Tn5 insertion mutagenesis, and the mutants obtained showed a good plant growth-promoting effect when applied to the cucumber seedlings. The results suggest that the identified functional genes regulates the biosynthesis of siderophore in azotobacter GXGL-4A, and the specific mechanism needs to be further investigated.
Collapse
|
10
|
Kim B, Do H, Kim BM, Lee JH, Kim S, Kim EJ, Lee J, Cho SM, Kim K. Freezing-enhanced oxidation of iodide by hydrogen peroxide in the presence of antifreeze proteins from the Arctic yeast Leucosporidium sp.AY30. ENVIRONMENTAL RESEARCH 2022; 212:113233. [PMID: 35390302 DOI: 10.1016/j.envres.2022.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Ice-binding proteins (IBPs), originating from Arctic or Antarctic microorganisms, have freeze-inhibiting characteristics, allowing these organisms to survive in polar regions. Despite their significance in polar environments, the mechanism through which IBPs affect the chemical reactions in ice by controlling ice crystal formation has not yet been reported. In this study, a new mechanism for iodide (I-) activation into triiodide (I3-), which is the abundant iodine species in seawater, by using hydrogen peroxide (H2O2) in a frozen solution with IBPs was developed. A significant enhancement of I- activation into I3- was observed in the presence of Arctic-yeast-originating extracellular ice-binding glycoprotein (LeIBP) isolated from Leucosporidium sp. AY30, and a further increase in the I3- concentration was observed with the introduction of H2O2 to the frozen solution (25 times higher than in the aqueous solution after 24 h of reaction). The reaction in the ice increased with an increase in LeIBP concentration. The in-situ pH measurement in ice using cresol red (CR) revealed protons accumulated in the ice grain boundaries by LeIBP. However, the presence of LeIBP did not influence the acidity of the ice. The enhanced freeze concentration effect of H2O2 by LeIBP indicated that larger ice granules were formed in the presence of LeIBP. The results suggest that LeIBP affects the formation and morphology of ice granules, which reduces the total volume of ice boundaries throughout the ice. This leads to an increased local concentration of I- and H2O2 within the ice grain boundaries. IBP-assisted production of gaseous iodine in a frozen environment provides a previously unrecognized formation mechanism of active iodine species in the polar regions.
Collapse
Affiliation(s)
- Bomi Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990, Republic of Korea
| | - Hackwon Do
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990, Republic of Korea
| | - Bo Mi Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Eun Jae Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jungeun Lee
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sung Mi Cho
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990, Republic of Korea.
| |
Collapse
|
11
|
Forchlorfenuron and Novel Analogs Cause Cytotoxic Effects in Untreated and Cisplatin-Resistant Malignant Mesothelioma-Derived Cells. Int J Mol Sci 2022; 23:ijms23073963. [PMID: 35409322 PMCID: PMC8999537 DOI: 10.3390/ijms23073963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant mesothelioma (MM) is a currently incurable, aggressive cancer derived from mesothelial cells, most often resulting from asbestos exposure. The current first-line treatment in unresectable MM is cisplatin/pemetrexed, which shows very little long-term effectiveness, necessitating research for novel therapeutic interventions. The existing chemotherapies often act on the cytoskeleton, including actin filaments and microtubules, but recent advances indicate the ‘fourth’ form consisting of the family of septins, representing a novel target. The septin inhibitor forchlorfenuron (FCF) and FCF analogs inhibit MM cell growth in vitro, but at concentrations which are too high for clinical applications. Based on the reported requirement of the chloride group in the 2-position of the pyridine ring of FCF for MM cell growth inhibition and cytotoxicity, we systematically investigated the importance (cell growth-inhibiting capacity) of the halogen atoms fluorine, chlorine, bromine and iodine in the 2- or 3-position of the pyridine ring. The MM cell lines ZL55, MSTO-211H, and SPC212, and—as a control—immortalized Met-5A mesothelial cells were used. The potency of the various halogen substitutions in FCF was mostly correlated with the atom size (covalent radius); the small fluoride analogs showed the least effect, while the largest one (iodide) most strongly decreased the MTT signals, in particular in MM cells derived from epithelioid MM. In the latter, the strongest effects in vitro were exerted by the 2-iodo and, unexpectedly, the 2-trifluoromethyl (2-CF3) FCF analogs, which were further tested in vivo in mice. However, FCF-2-I and, more strongly, FCF-2-CF3 caused rapidly occurring strong symptoms of systemic toxicity at doses lower than those previously obtained with FCF. Thus, we investigated the effectiveness of FCF (and selected analogs) in vitro in MM cells which were first exposed to cisplatin. The slowly appearing population of cisplatin-resistant cells was still susceptible to the growth-inhibiting/cytotoxic effect of FCF and its analogs, indicating that cisplatin and FCF target non-converging pathways in MM cells. Thus, a combination therapy of cisplatin and FCF (analogs) might represent a new avenue for the treatment of repopulating chemo-resistant MM cells in this currently untreatable cancer.
Collapse
|
12
|
Paladino A, Balasco N, Graziano G, Vitagliano L. A Protein Data Bank survey of multimodal binding of thiocyanate to proteins: Evidence for thiocyanate promiscuity. Int J Biol Macromol 2022; 208:29-36. [PMID: 35259436 DOI: 10.1016/j.ijbiomac.2022.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
Over the last one and half century, a myriad of studies has demonstrated that Hofmeister ions have a major impact on protein stability and solubility. Nevertheless, the definition of the physico-chemical basis of their activity has proved to be highly challenging and controversial. Here, by exploiting the enormous information content of the Protein Data Bank, we explored the binding to proteins of thiocyanate, the anion of the series exerting the highest solubilization/destabilization effects. The survey, which led to the identification and characterization of 712 thiocyanate binding sites, provides a comprehensive and atomic-level view of the varied interactions that the ion forms with proteins. The inspection of these sites highlights a limited tendency of thiocyanate to interact with structured water molecules, in line with the reported poor hydration of the ion. On the other hand, the thiocyanate makes interactions with protein nonpolar moieties, especially with the backbone Cα atom. In as many as 104 cases, the ion exclusively makes nonpolar contacts. In conclusion, these findings suggest that the ability of thiocyanate to bind all types of protein exposed patches may lead to the formation of a negatively charged electrostatic barrier that could prevent protein-protein aggregation and promote protein solubility. Moreover, the denaturing action of thiocyanate may be ascribed to its ability to establish multiple attractive interactions with protein surfaces.
Collapse
Affiliation(s)
- Antonella Paladino
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento 82100, Italy.
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento 82100, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| |
Collapse
|
13
|
Wiryaman T, Toor N. Cryo-EM structure of a thermostable bacterial nanocompartment. IUCRJ 2021; 8:342-350. [PMID: 33953921 PMCID: PMC8086157 DOI: 10.1107/s2052252521001949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/18/2021] [Indexed: 05/21/2023]
Abstract
Protein nanocompartments are widespread in bacteria and archaea, but their functions are not yet well understood. Here, the cryo-EM structure of a nanocompartment from the thermophilic bacterium Thermotoga maritima is reported at 2.0 Å resolution. The high resolution of this structure shows that interactions in the E-loop domain may be important for the thermostability of the nanocompartment assembly. Also, the channels at the fivefold axis, threefold axis and dimer interface are assessed for their ability to transport iron. Finally, an unexpected flavin ligand was identified on the exterior of the shell, indicating that this nanocompartment may also play a direct role in iron metabolism.
Collapse
Affiliation(s)
- Timothy Wiryaman
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Fontaine N, Picard-Lafond A, Asselin J, Boudreau D. Thinking outside the shell: novel sensors designed from plasmon-enhanced fluorescent concentric nanoparticles. Analyst 2020; 145:5965-5980. [PMID: 32815925 DOI: 10.1039/d0an01092h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The alteration of photophysical properties of fluorophores in the vicinity of a metallic nanostructure, a phenomenon termed plasmon- or metal-enhanced fluorescence (MEF), has been investigated extensively and used in a variety of proof-of-concept demonstrations over the years. A particularly active area of development in this regard has been the design of nanostructures where fluorophore and metallic core are held in a stable geometry that imparts improved luminosity and photostability to a plethora of organic fluorophores. This minireview presents an overview of MEF-based concentric core-shell sensors developed in the past few years. These architectures expand the range of applications of nanoparticles (NPs) beyond the uses possible with fluorescent molecules. Design aspects that are being described include the influence of the nanocomposite structure on MEF, notably the dependence of fluorescence intensity and lifetime on the distance to the plasmonic core. The chemical composition of nanocomposites as a design feature is also discussed, taking as an example the use of non-noble plasmonic metals such as indium as core materials to enhance multiple fluorophores throughout the UV-Vis range and tune the sensitivity of halide-sensing fluorophores operating on the principle of collisional quenching. Finally, the paper describes how various solid substrates can be functionalized with MEF-based nanosensors to bestow them with intense and photostable pH-sensitive properties for use in fields such as medical therapy and diagnostics, dentistry, biochemistry and microfluidics.
Collapse
Affiliation(s)
- Nicolas Fontaine
- Department of Chemistry, Université Laval, 1045 avenue de la Médecine, Québec, CanadaG1V 0A6.
| | | | | | | |
Collapse
|