1
|
Reuben RC, Torres C. Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications. World J Microbiol Biotechnol 2025; 41:41. [PMID: 39826029 PMCID: PMC11742929 DOI: 10.1007/s11274-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis. While single omics studies have undoubtedly contributed to our current understanding of milk microbiome and mastitis, they often provide limited information, targeting only a single biological viewpoint which is insufficient to provide system-wide information necessary for elucidating the biological footprints and molecular mechanisms driving mastitis and milk microbiome dysbiosis. Therefore, integrating a multi-omics approach in milk microbiome research could generate new knowledge, improve the current understanding of the functional and structural signatures of the milk ecosystem, and provide insights for sustainable mastitis control and microbiome management.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Biology Department, King's College, 133 North River Street, Wilkes-Barre, PA, 18711, USA.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Martin JD, Tisler S, Scheel M, Svendsen S, Anwar MZ, Zervas A, Ekelund F, Bester K, Hansen LH, Jacobsen CS, Ellegaard-Jensen L. Total RNA analysis of the active microbiome on moving bed biofilm reactor carriers under incrementally increasing micropollutant concentrations. FEMS Microbiol Ecol 2024; 100:fiae098. [PMID: 38986504 PMCID: PMC11385203 DOI: 10.1093/femsec/fiae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Micropollutants are increasingly prevalent in the aquatic environment. A major part of these originates from wastewater treatment plants since traditional treatment technologies do not remove micropollutants sufficiently. Moving bed biofilm reactors (MBBRs), however, have been shown to aid in micropollutant removal when applied to conventional wastewater treatment as a polishing step. Here, we used Total RNA sequencing to investigate both the active microbial community and functional dynamics of MBBR biofilms when these were exposed to increasing micropollutant concentrations over time. Concurrently, we conducted batch culture experiments using biofilm carriers from the MBBRs to assess micropollutant degradation potential. Our study showed that biofilm eukaryotes, in particular protozoa, were negatively influenced by micropollutant exposure, in contrast to prokaryotes that increased in relative abundance. Further, we found several functional genes that were differentially expressed between the MBBR with added micropollutants and the control. These include genes involved in aromatic and xenobiotic compound degradation. Moreover, the biofilm carrier batch experiment showed vastly different alterations in benzotriazole and diclofenac degradation following the increased micropollutant concentrations in the MBBR. Ultimately, this study provides essential insights into the microbial community and functional dynamics of MBBRs and how an increased load of micropollutants influences these dynamics.
Collapse
Affiliation(s)
- Joseph Donald Martin
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Selina Tisler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Maria Scheel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Sif Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- The Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, 8888 University Dr. W, Burnaby, BC V5A 1S6, Canada
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Flemming Ekelund
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
3
|
Thøgersen MS, Zervas A, Stougaard P, Ellegaard-Jensen L. Investigating eukaryotic and prokaryotic diversity and functional potential in the cold and alkaline ikaite columns in Greenland. Front Microbiol 2024; 15:1358787. [PMID: 38655082 PMCID: PMC11035741 DOI: 10.3389/fmicb.2024.1358787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
The ikaite columns in the Ikka Fjord, SW Greenland, represent a permanently cold and alkaline environment known to contain a rich bacterial diversity. 16S and 18S rRNA gene amplicon and metagenomic sequencing was used to investigate the microbial diversity in the columns and for the first time, the eukaryotic and archaeal diversity in ikaite columns were analyzed. The results showed a rich prokaryotic diversity that varied across columns as well as within each column. Seven different archaeal phyla were documented in multiple locations inside the columns. The columns also contained a rich eukaryotic diversity with 27 phyla representing microalgae, protists, fungi, and small animals. Based on metagenomic sequencing, 25 high-quality MAGs were assembled and analyzed for the presence of genes involved in cycling of nitrogen, sulfur, and phosphorous as well as genes encoding carbohydrate-active enzymes (CAZymes), showing a potentially very bioactive microbial community.
Collapse
|
4
|
Scheel M, Zervas A, Rijkers R, Tveit AT, Ekelund F, Campuzano Jiménez F, Christensen TR, Jacobsen CS. Abrupt permafrost thaw triggers activity of copiotrophs and microbiome predators. FEMS Microbiol Ecol 2023; 99:fiad123. [PMID: 37796894 PMCID: PMC10599396 DOI: 10.1093/femsec/fiad123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism.
Collapse
Affiliation(s)
- Maria Scheel
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
- Department of Ecoscience, Aarhus University, Roskilde 4000, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
| | - Ruud Rijkers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø 9019, Norway
| | - Flemming Ekelund
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | | | - Torben R Christensen
- Department of Ecoscience, Aarhus University, Roskilde 4000, Denmark
- Water, Energy and Environmental Engineering Research Unit, University of Oulu, FI-90014 Oulu, Finland
| | - Carsten S Jacobsen
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
| |
Collapse
|
5
|
Couvillion SP, Mostoller KE, Williams JE, Pace RM, Stohel IL, Peterson HK, Nicora CD, Nakayasu ES, Webb-Robertson BJM, McGuire MA, McGuire MK, Metz TO. Interrogating the role of the milk microbiome in mastitis in the multi-omics era. Front Microbiol 2023; 14:1105675. [PMID: 36819069 PMCID: PMC9932517 DOI: 10.3389/fmicb.2023.1105675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
There is growing interest in a functional understanding of milk-associated microbiota as there is ample evidence that host-associated microbial communities play an active role in host health and phenotype. Mastitis, characterized by painful inflammation of the mammary gland, is prevalent among lactating humans and agricultural animals and is associated with significant clinical and economic consequences. The etiology of mastitis is complex and polymicrobial and correlative studies have indicated alterations in milk microbial community composition. Recent evidence is beginning to suggest that a causal relationship may exist between the milk microbiota and host phenotype in mastitis. Multi-omic approaches can be leveraged to gain a mechanistic, molecular level understanding of how the milk microbiome might modulate host physiology, thereby informing strategies to prevent and ameliorate mastitis. In this paper, we review existing studies that have utilized omics approaches to investigate the role of the milk microbiome in mastitis. We also summarize the strengths and challenges associated with the different omics techniques including metagenomics, metatranscriptomics, metaproteomics, metabolomics and lipidomics and provide perspective on the integration of multiple omics technologies for a better functional understanding of the milk microbiome.
Collapse
Affiliation(s)
- Sneha P. Couvillion
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States,*Correspondence: Sneha P. Couvillion, ✉
| | - Katie E. Mostoller
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Janet E. Williams
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Izabel L. Stohel
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Haley K. Peterson
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Ernesto S. Nakayasu
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Bobbie-Jo M. Webb-Robertson
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Mark A. McGuire
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Thomas O. Metz
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States,Thomas O. Metz, ✉
| |
Collapse
|
6
|
Chakoory O, Comtet-Marre S, Peyret P. RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties. NAR Genom Bioinform 2022; 4:lqac070. [PMID: 36159175 PMCID: PMC9492272 DOI: 10.1093/nargab/lqac070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Metagenomic classifiers are widely used for the taxonomic profiling of metagenomics data and estimation of taxa relative abundance. Small subunit rRNA genes are a gold standard for phylogenetic resolution of microbiota, although the power of this marker comes down to its use as full-length. We aimed at identifying the tools that can efficiently lead to taxonomic resolution down to the species level. To reach this goal, we benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then compiled the best tools (BBTools, FastQC, SortMeRNA, MetaRib, EMIRGE, VSEARCH, BBMap and QIIME 2’s Sklearn classifier) to build a pipeline called RiboTaxa. Using metagenomics datasets, RiboTaxa gave the best results compared to other tools (i.e. Kraken2, Centrifuge, METAXA2, phyloFlash, SPINGO, BLCA, MEGAN) with precise taxonomic identification and relative abundance description without false positive detection (F-measure of 100% and 83.7% at genus level and species level, respectively). Using real datasets from various environments (i.e. ocean, soil, human gut) and from different approaches (e.g. metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not discerned by current bioinformatics analysis opening new biological perspectives in human and environmental health.
Collapse
Affiliation(s)
- Oshma Chakoory
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
SFQ: Constructing and Querying a Succinct Representation of FASTQ Files. ELECTRONICS 2022. [DOI: 10.3390/electronics11111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A large and ever increasing quantity of high throughput sequencing (HTS) data is stored in FASTQ files. Various methods for data compression are used to mitigate the storage and transmission costs, from the still prevalent general purpose Gzip to state-of-the-art specialized methods. However, all of the existing methods for FASTQ file compression require the decompression stage before the HTS data can be used. This is particularly costly with the random access to specific records in FASTQ files. We propose the sFASTQ format, a succinct representation of FASTQ files that can be used without decompression (i.e., the records can be retrieved and listed online), and that supports random access to individual records. The sFASTQ format can be searched on the disk, which eliminates the need for any additional memory resources. The searchable sFASTQ archive is of comparable size to the corresponding Gzip file. sFASTQ format outputs (interleaved) FASTQ records to the STDOUT stream. We provide SFQ, a software for the construction and usage of the sFASTQ format that supports variable length reads, pairing of records, and both lossless and lossy compression of quality scores.
Collapse
|
8
|
Mondini A, Anwar MZ, Ellegaard-Jensen L, Lavin P, Jacobsen CS, Purcarea C. Heat Shock Response of the Active Microbiome From Perennial Cave Ice. Front Microbiol 2022; 12:809076. [PMID: 35360653 PMCID: PMC8960993 DOI: 10.3389/fmicb.2021.809076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ice caves constitute the newly investigated frozen and secluded model habitats for evaluating the resilience of ice-entrapped microbiomes in response to climate changes. This survey identified the total and active prokaryotic and eukaryotic communities from millennium-old ice accumulated in Scarisoara cave (Romania) using Illumina shotgun sequencing of the ribosomal RNA (rRNA) and messenger RNA (mRNA)-based functional analysis of the metatranscriptome. Also, the response of active microbiome to heat shock treatment mimicking the environmental shift during ice melting was evaluated at both the taxonomic and metabolic levels. The putatively active microbial community was dominated by bacterial taxa belonging to Proteobacteria and Bacteroidetes, which are highly resilient to thermal variations, while the scarcely present archaea belonging to Methanomicrobia was majorly affected by heat shock. Among eukaryotes, the fungal rRNA community was shared between the resilient Chytridiomycota and Blastocladiomycota, and the more sensitive Ascomycota and Basidiomycota taxa. A complex microeukaryotic community highly represented by Tardigrada and Rotifera (Metazoa), Ciliophora and Cercozoa (Protozoa), and Chlorophyta (Plantae) was evidenced for the first time in this habitat. This community showed a quick reaction to heat shock, followed by a partial recovery after prolonged incubation at 4°C due to possible predation processes on the prokaryotic cluster. Analysis of mRNA differential gene expression revealed the presence of an active microbiome in the perennial ice from the Scarisoara cave and associated molecular mechanisms for coping with temperature variations by the upregulation of genes involved in enzyme recovery, energy storage, carbon and nitrogen regulation, and cell motility. This first report on the active microbiome embedded in perennial ice from caves and its response to temperature stress provided a glimpse into the impact of glaciers melting and the resilience mechanisms in this habitat, contributing to the knowledge on the functional role of active microbes in frozen environments and their response to climatic changes.
Collapse
Affiliation(s)
- Antonio Mondini
- Department of Microbiology, Institute of Biology, Bucharest, Romania
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
- Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
| | - Paris Lavin
- Centre of Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
| | - Cristina Purcarea
- Department of Microbiology, Institute of Biology, Bucharest, Romania
- *Correspondence: Cristina Purcarea,
| |
Collapse
|
9
|
Nuccio EE, Nguyen NH, Nunes da Rocha U, Mayali X, Bougoure J, Weber PK, Brodie E, Firestone M, Pett-Ridge J. Community RNA-Seq: multi-kingdom responses to living versus decaying roots in soil. ISME COMMUNICATIONS 2021; 1:72. [PMID: 36765158 PMCID: PMC9723751 DOI: 10.1038/s43705-021-00059-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Roots are a primary source of organic carbon input in most soils. The consumption of living and detrital root inputs involves multi-trophic processes and multiple kingdoms of microbial life, but typical microbial ecology studies focus on only one or two major lineages. We used Illumina shotgun RNA sequencing to conduct PCR-independent SSU rRNA community analysis ("community RNA-Seq") and simultaneously assess the bacteria, archaea, fungi, and microfauna surrounding both living and decomposing roots of the annual grass, Avena fatua. Plants were grown in 13CO2-labeled microcosms amended with 15N-root litter to identify the preferences of rhizosphere organisms for root exudates (13C) versus decaying root biomass (15N) using NanoSIMS microarray imaging (Chip-SIP). When litter was available, rhizosphere and bulk soil had significantly more Amoebozoa, which are potentially important yet often overlooked top-down drivers of detritusphere community dynamics and nutrient cycling. Bulk soil containing litter was depleted in Actinobacteria but had significantly more Bacteroidetes and Proteobacteria. While Actinobacteria were abundant in the rhizosphere, Chip-SIP showed Actinobacteria preferentially incorporated litter relative to root exudates, indicating this group's more prominent role in detritus elemental cycling in the rhizosphere. Our results emphasize that decomposition is a multi-trophic process involving complex interactions, and our methodology can be used to track the trajectory of carbon through multi-kingdom soil food webs.
Collapse
Affiliation(s)
- Erin E Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, Australia
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Eoin Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Mary Firestone
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA.
| |
Collapse
|