1
|
Bulavaitė A, Dapkūnas J, Reškevičiūtė R, Dalgėdienė I, Valančauskas L, Baranauskienė L, Plečkaitytė M. Gardnerella fibrinogen-binding protein as a candidate adherence factor. Front Cell Infect Microbiol 2025; 15:1556232. [PMID: 40406528 PMCID: PMC12095359 DOI: 10.3389/fcimb.2025.1556232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/18/2025] [Indexed: 05/26/2025] Open
Abstract
Bacterial vaginosis (BV), a form of vaginal dysbiosis, is associated with numerous adverse reproductive and obstetric outcomes. Gardnerella spp. are among the key bacteria identified in most BV cases. The formation of a polymicrobial Gardnerella-dominated biofilm on the vaginal epithelium is a characteristic diagnostic marker of BV. Gardnerella colonization and biofilm formation indicate a significant adhesion potential, the determinants of which remain unexplored. In this initial approach to identify Gardnerella adhesins, we analyzed the Cna protein located on the G. vaginalis ATCC 14018 cell surface as determined previously. Structure modeling of Cna (designated Grd Cna) revealed that the protein contains N2 and N3 domains with an immunoglobulin (IgG)-like fold, which shows structural homology to the corresponding domains in SdrD and UafA proteins of the microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) family. A single B domain shares structural similarity with the corresponding domain of Sdr proteins. The R region is rich in PKD repeats, while the C-terminal contains a non-canonical LVNTG cell wall sorting motif. The cna gene was predominantly detected in G. vaginalis isolates but was absent in other commonly identified Gardnerella species isolates. The recombinant Grd Cna protein binds dose-dependently to human fibrinogen but does not interact with fibronectin or collagen types I, III, or IV. Cna-positive G. vaginalis cells adhered to immobilized fibrinogen; however, recombinant Cna did not inhibit this binding, suggesting that Cna may not be a major adhesin mediating G. vaginalis adherence to this ECM component.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Milda Plečkaitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Margelevičius M. GTalign: spatial index-driven protein structure alignment, superposition, and search. Nat Commun 2024; 15:7305. [PMID: 39181863 PMCID: PMC11344802 DOI: 10.1038/s41467-024-51669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
With protein databases growing rapidly due to advances in structural and computational biology, the ability to accurately align and rapidly search protein structures has become essential for biological research. In response to the challenge posed by vast protein structure repositories, GTalign offers an innovative solution to protein structure alignment and search-an algorithm that achieves optimal superposition at high speeds. Through the design and implementation of spatial structure indexing, GTalign parallelizes all stages of superposition search across residues and protein structure pairs, yielding rapid identification of optimal superpositions. Rigorous evaluation across diverse datasets reveals GTalign as the most accurate among structure aligners while presenting orders of magnitude in speedup at state-of-the-art accuracy. GTalign's high speed and accuracy make it useful for numerous applications, including functional inference, evolutionary analyses, protein design, and drug discovery, contributing to advancing understanding of protein structure and function.
Collapse
|
3
|
Tominaga K, Ozaki S, Sato S, Katayama T, Nishimura Y, Omae K, Iwasaki W. Frequent nonhomologous replacement of replicative helicase loaders by viruses in Vibrionaceae. Proc Natl Acad Sci U S A 2024; 121:e2317954121. [PMID: 38683976 PMCID: PMC11087808 DOI: 10.1073/pnas.2317954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.
Collapse
Affiliation(s)
- Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Shohei Sato
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Kimiho Omae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| |
Collapse
|
4
|
Olechnovič K, Valančauskas L, Dapkūnas J, Venclovas Č. Prediction of protein assemblies by structure sampling followed by interface-focused scoring. Proteins 2023; 91:1724-1733. [PMID: 37578163 DOI: 10.1002/prot.26569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Proteins often function as part of permanent or transient multimeric complexes, and understanding function of these assemblies requires knowledge of their three-dimensional structures. While the ability of AlphaFold to predict structures of individual proteins with unprecedented accuracy has revolutionized structural biology, modeling structures of protein assemblies remains challenging. To address this challenge, we developed a protocol for predicting structures of protein complexes involving model sampling followed by scoring focused on the subunit-subunit interaction interface. In this protocol, we diversified AlphaFold models by varying construction and pairing of multiple sequence alignments as well as increasing the number of recycles. In cases when AlphaFold failed to assemble a full protein complex or produced unreliable results, additional diverse models were constructed by docking of monomers or subcomplexes. All the models were then scored using a newly developed method, VoroIF-jury, which relies only on structural information. Notably, VoroIF-jury is independent of AlphaFold self-assessment scores and therefore can be used to rank models originating from different structure prediction methods. We tested our protocol in CASP15 and obtained top results, significantly outperforming the standard AlphaFold-Multimer pipeline. Analysis of our results showed that the accuracy of our assembly models was capped mainly by structure sampling rather than model scoring. This observation suggests that better sampling, especially for the antibody-antigen complexes, may lead to further improvement. Our protocol is expected to be useful for modeling and/or scoring protein assemblies.
Collapse
Affiliation(s)
- Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lukas Valančauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Dapkūnas J, Margelevičius M. The COMER web server for protein analysis by homology. Bioinformatics 2022; 39:6909010. [PMID: 36519835 PMCID: PMC9825750 DOI: 10.1093/bioinformatics/btac807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Sequence homology is a basic concept in protein evolution, structure and function studies. However, there are not many different tools and services for homology searches being sensitive, accurate and fast at the same time. We present a new web server for protein analysis based on COMER2, a sequence alignment and homology search method that exhibits these characteristics. COMER2 has been upgraded since its last publication to improve its alignment quality and ease of use. We demonstrate how the user can benefit from using it by providing examples of extensive annotation of proteins of unknown function. Among the distinctive features of the web server is the user's ability to submit multiple queries with one click of a button. This and other features allow for transparently running homology searches-in a command-line, programmatic or graphical environment-across multiple databases with multiple queries. They also promote extensive simultaneous protein analysis at the sequence, structure and function levels. AVAILABILITY AND IMPLEMENTATION The COMER web server is available at https://bioinformatics.lt/comer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
6
|
Laine E, Eismann S, Elofsson A, Grudinin S. Protein sequence-to-structure learning: Is this the end(-to-end revolution)? Proteins 2021; 89:1770-1786. [PMID: 34519095 DOI: 10.1002/prot.26235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023]
Abstract
The potential of deep learning has been recognized in the protein structure prediction community for some time, and became indisputable after CASP13. In CASP14, deep learning has boosted the field to unanticipated levels reaching near-experimental accuracy. This success comes from advances transferred from other machine learning areas, as well as methods specifically designed to deal with protein sequences and structures, and their abstractions. Novel emerging approaches include (i) geometric learning, that is, learning on representations such as graphs, three-dimensional (3D) Voronoi tessellations, and point clouds; (ii) pretrained protein language models leveraging attention; (iii) equivariant architectures preserving the symmetry of 3D space; (iv) use of large meta-genome databases; (v) combinations of protein representations; and (vi) finally truly end-to-end architectures, that is, differentiable models starting from a sequence and returning a 3D structure. Here, we provide an overview and our opinion of the novel deep learning approaches developed in the last 2 years and widely used in CASP14.
Collapse
Affiliation(s)
- Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Stephan Eismann
- Department of Computer Science and Applied Physics, Stanford University, Stanford, California, USA
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sergei Grudinin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
| |
Collapse
|