Khan J, Kokot M, Deorowicz S, Patro R. Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2.
Genome Biol 2022;
23:190. [PMID:
36076275 PMCID:
PMC9454175 DOI:
10.1186/s13059-022-02743-6]
[Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The de Bruijn graph is a key data structure in modern computational genomics, and construction of its compacted variant resides upstream of many genomic analyses. As the quantity of genomic data grows rapidly, this often forms a computational bottleneck. We present Cuttlefish 2, significantly advancing the state-of-the-art for this problem. On a commodity server, it reduces the graph construction time for 661K bacterial genomes, of size 2.58Tbp, from 4.5 days to 17-23 h; and it constructs the graph for 1.52Tbp white spruce reads in approximately 10 h, while the closest competitor requires 54-58 h, using considerably more memory.
Collapse