1
|
Weiner S, Bansal MS. DICE: fast and accurate distance-based reconstruction of single-cell copy number phylogenies. Life Sci Alliance 2025; 8:e202402923. [PMID: 39667913 PMCID: PMC11638338 DOI: 10.26508/lsa.202402923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Somatic copy number alterations (sCNAs) are valuable phylogenetic markers for inferring evolutionary relationships among tumor cell subpopulations. Advances in single-cell DNA sequencing technologies are making it possible to obtain such sCNAs datasets at ever-larger scales. However, existing methods for reconstructing phylogenies from sCNAs are often too slow for large datasets. We propose two new distance-based methods, DICE-bar and DICE-star, for reconstructing single-cell tumor phylogenies from sCNA data. Using carefully simulated datasets, we find that DICE-bar matches or exceeds the accuracies of all other methods on noise-free datasets and that DICE-star shows exceptional robustness to noise and outperforms all other methods on noisy datasets. Both methods are also orders of magnitude faster than many existing methods. Our experimental analysis also reveals how noise/error in copy number inference, as expected for real datasets, can drastically impact the accuracies of most methods. We apply DICE-star, the most accurate method on error-prone datasets, to several real single-cell breast and ovarian cancer datasets and find that it rapidly produces phylogenies of equivalent or greater reliability compared with existing methods.
Collapse
Affiliation(s)
- Samson Weiner
- School of Computing, University of Connecticut, Storrs, CT, USA
| | - Mukul S Bansal
- School of Computing, University of Connecticut, Storrs, CT, USA
- The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Lu B. Cancer phylogenetic inference using copy number alterations detected from DNA sequencing data. CANCER PATHOGENESIS AND THERAPY 2025; 3:16-29. [PMID: 39872371 PMCID: PMC11764021 DOI: 10.1016/j.cpt.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 01/30/2025]
Abstract
Cancer is an evolutionary process involving the accumulation of diverse somatic mutations and clonal evolution over time. Phylogenetic inference from samples obtained from an individual patient offers a powerful approach to unraveling the intricate evolutionary history of cancer and provides insights that can inform cancer treatment. Somatic copy number alterations (CNAs) are important in cancer evolution and are often used as markers, alone or with other somatic mutations, for phylogenetic inferences, particularly in low-coverage DNA sequencing data. Many phylogenetic inference methods using CNAs detected from bulk or single-cell DNA sequencing data have been developed over the years. However, there have been no systematic reviews on these methods. To summarize the state-of-the-art of the field and inform future development, this review presents a comprehensive survey on the major challenges in inference, different types of methods, and applications of these methods. The challenges are discussed from the aspects of input data, models of evolution, and inference algorithms. The different methods are grouped according to the markers used for inference and the types of the reconstructed trees. The applications include using phylogenetic inference to understand intra-tumor heterogeneity, metastasis, treatment resistance, and early cancer development. This review also sheds light on future directions of cancer phylogenetic inference using CNAs, including the improvement of scalability, the utilization of new types of data, and the development of more realistic models of evolution.
Collapse
Affiliation(s)
- Bingxin Lu
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
3
|
Schmidt H, Sashittal P, Raphael BJ. A zero-agnostic model for copy number evolution in cancer. PLoS Comput Biol 2023; 19:e1011590. [PMID: 37943952 PMCID: PMC10662746 DOI: 10.1371/journal.pcbi.1011590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
MOTIVATION New low-coverage single-cell DNA sequencing technologies enable the measurement of copy number profiles from thousands of individual cells within tumors. From this data, one can infer the evolutionary history of the tumor by modeling transformations of the genome via copy number aberrations. Copy number aberrations alter multiple adjacent genomic loci, violating the standard phylogenetic assumption that loci evolve independently. Thus, specialized models to infer copy number phylogenies have been introduced. A widely used model is the copy number transformation (CNT) model in which a genome is represented by an integer vector and a copy number aberration is an event that either increases or decreases the number of copies of a contiguous segment of the genome. The CNT distance between a pair of copy number profiles is the minimum number of events required to transform one profile to another. While this distance can be computed efficiently, no efficient algorithm has been developed to find the most parsimonious phylogeny under the CNT model. RESULTS We introduce the zero-agnostic copy number transformation (ZCNT) model, a simplification of the CNT model that allows the amplification or deletion of regions with zero copies. We derive a closed form expression for the ZCNT distance between two copy number profiles and show that, unlike the CNT distance, the ZCNT distance forms a metric. We leverage the closed-form expression for the ZCNT distance and an alternative characterization of copy number profiles to derive polynomial time algorithms for two natural relaxations of the small parsimony problem on copy number profiles. While the alteration of zero copy number regions allowed under the ZCNT model is not biologically realistic, we show on both simulated and real datasets that the ZCNT distance is a close approximation to the CNT distance. Extending our polynomial time algorithm for the ZCNT small parsimony problem, we develop an algorithm, Lazac, for solving the large parsimony problem on copy number profiles. We demonstrate that Lazac outperforms existing methods for inferring copy number phylogenies on both simulated and real data.
Collapse
Affiliation(s)
- Henri Schmidt
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Palash Sashittal
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Benjamin J. Raphael
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
4
|
Hasan AMM, Cremaschi P, Wetterskog D, Jayaram A, Wong SQ, Williams S, Pasam A, Trigos A, Trujillo B, Grist E, Friedrich S, Vainauskas O, Parry M, Ismail M, Devlies W, Wingate A, Linch M, Naceur-Lombardelli C, Swanton C, Jamal-Hanjani M, Lise S, Sandhu S, Attard G. Copy number architectures define treatment-mediated selection of lethal prostate cancer clones. Nat Commun 2023; 14:4823. [PMID: 37563129 PMCID: PMC10415299 DOI: 10.1038/s41467-023-40315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Despite initial responses to hormone treatment, metastatic prostate cancer invariably evolves to a lethal state. To characterize the intra-patient evolutionary relationships of metastases that evade treatment, we perform genome-wide copy number profiling and bespoke approaches targeting the androgen receptor (AR) on 167 metastatic regions from 11 organs harvested post-mortem from 10 men who died from prostate cancer. We identify diverse and patient-unique alterations clustering around the AR in metastases from every patient with evidence of independent acquisition of related genomic changes within an individual and, in some patients, the co-existence of AR-neutral clones. Using the genomic boundaries of pan-autosome copy number changes, we confirm a common clone of origin across metastases and diagnostic biopsies, and identified in individual patients, clusters of metastases occupied by dominant clones with diverged autosomal copy number alterations. These autosome-defined clusters are characterized by cluster-specific AR gene architectures, and in two index cases are topologically more congruent than by chance (p-values 3.07 × 10-8 and 6.4 × 10-4). Integration with anatomical sites suggests patterns of spread and points of genomic divergence. Here, we show that copy number boundaries identify treatment-selected clones with putatively distinct lethal trajectories.
Collapse
Affiliation(s)
| | | | | | - Anuradha Jayaram
- University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Scott Williams
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Anupama Pasam
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Anna Trigos
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Blanca Trujillo
- University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
| | - Emily Grist
- University College London Cancer Institute, London, UK
| | | | | | - Marina Parry
- University College London Cancer Institute, London, UK
| | | | - Wout Devlies
- University College London Cancer Institute, London, UK
| | - Anna Wingate
- University College London Cancer Institute, London, UK
| | - Mark Linch
- University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
| | | | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Stefano Lise
- University College London Cancer Institute, London, UK
| | | | - Gerhardt Attard
- University College London Cancer Institute, London, UK.
- University College London Hospitals, London, UK.
| |
Collapse
|
5
|
Liu Y, Li XC, Rashidi Mehrabadi F, Schäffer AA, Pratt D, Crawford DR, Malikić S, Molloy EK, Gopalan V, Mount SM, Ruppin E, Aldape KD, Sahinalp SC. Single-cell methylation sequencing data reveal succinct metastatic migration histories and tumor progression models. Genome Res 2023; 33:1089-1100. [PMID: 37316351 PMCID: PMC10538489 DOI: 10.1101/gr.277608.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Recent studies exploring the impact of methylation in tumor evolution suggest that although the methylation status of many of the CpG sites are preserved across distinct lineages, others are altered as the cancer progresses. Because changes in methylation status of a CpG site may be retained in mitosis, they could be used to infer the progression history of a tumor via single-cell lineage tree reconstruction. In this work, we introduce the first principled distance-based computational method, Sgootr, for inferring a tumor's single-cell methylation lineage tree and for jointly identifying lineage-informative CpG sites that harbor changes in methylation status that are retained along the lineage. We apply Sgootr on single-cell bisulfite-treated whole-genome sequencing data of multiregionally sampled tumor cells from nine metastatic colorectal cancer patients, as well as multiregionally sampled single-cell reduced-representation bisulfite sequencing data from a glioblastoma patient. We show that the tumor lineages constructed reveal a simple model underlying tumor progression and metastatic seeding. A comparison of Sgootr against alternative approaches shows that Sgootr can construct lineage trees with fewer migration events and with more in concordance with the sequential-progression model of tumor evolution, with a running time a fraction of that used in prior studies. Lineage-informative CpG sites identified by Sgootr are in inter-CpG island (CGI) regions, as opposed to intra-CGIs, which have been the main regions of interest in genomic methylation-related analyses.
Collapse
Affiliation(s)
- Yuelin Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Xuan Cindy Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Program in Computational Biology, Bioinformatics, and Genomics, University of Maryland, College Park, Maryland 20742, USA
| | - Farid Rashidi Mehrabadi
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Computer Science, Indiana University, Bloomington, Indiana 47408, USA
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David R Crawford
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Program in Computational Biology, Bioinformatics, and Genomics, University of Maryland, College Park, Maryland 20742, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Salem Malikić
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Erin K Molloy
- Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - S Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
6
|
Lu B, Curtius K, Graham TA, Yang Z, Barnes CP. CNETML: maximum likelihood inference of phylogeny from copy number profiles of multiple samples. Genome Biol 2023; 24:144. [PMID: 37340508 PMCID: PMC10283241 DOI: 10.1186/s13059-023-02983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Phylogenetic trees based on copy number profiles from multiple samples of a patient are helpful to understand cancer evolution. Here, we develop a new maximum likelihood method, CNETML, to infer phylogenies from such data. CNETML is the first program to jointly infer the tree topology, node ages, and mutation rates from total copy numbers of longitudinal samples. Our extensive simulations suggest CNETML performs well on copy numbers relative to ploidy and under slight violation of model assumptions. The application of CNETML to real data generates results consistent with previous discoveries and provides novel early copy number events for further investigation.
Collapse
Affiliation(s)
- Bingxin Lu
- Department of Cell and Developmental Biology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| | - Kit Curtius
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Trevor A Graham
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| |
Collapse
|
7
|
Lee H, Ha S, Choi S, Do S, Yoon S, Kim YK, Kim WY. Oncogenic Impact of TONSL, a Homologous Recombination Repair Protein at the Replication Fork, in Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24119530. [PMID: 37298484 DOI: 10.3390/ijms24119530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
We investigated the role of TONSL, a mediator of homologous recombination repair (HRR), in stalled replication fork double-strand breaks (DSBs) in cancer. Publicly available clinical data (tumors from the ovary, breast, stomach and lung) were analyzed through KM Plotter, cBioPortal and Qomics. Cancer stem cell (CSC)-enriched cultures and bulk/general mixed cell cultures (BCCs) with RNAi were employed to determine the effect of TONSL loss in cancer cell lines from the ovary, breast, stomach, lung, colon and brain. Limited dilution assays and ALDH assays were used to quantify the loss of CSCs. Western blotting and cell-based homologous recombination assays were used to identify DNA damage derived from TONSL loss. TONSL was expressed at higher levels in cancer tissues than in normal tissues, and higher expression was an unfavorable prognostic marker for lung, stomach, breast and ovarian cancers. Higher expression of TONSL is partly associated with the coamplification of TONSL and MYC, suggesting its oncogenic role. The suppression of TONSL using RNAi revealed that it is required in the survival of CSCs in cancer cells, while BCCs could frequently survive without TONSL. TONSL dependency occurs through accumulated DNA damage-induced senescence and apoptosis in TONSL-suppressed CSCs. The expression of several other major mediators of HRR was also associated with worse prognosis, whereas the expression of error-prone nonhomologous end joining molecules was associated with better survival in lung adenocarcinoma. Collectively, these results suggest that TONSL-mediated HRR at the replication fork is critical for CSC survival; targeting TONSL may lead to the effective eradication of CSCs.
Collapse
Affiliation(s)
- Hani Lee
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sojung Ha
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Soomin Do
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sukjoon Yoon
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yong Kee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Research Institute of Pharmacal Research, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Research Institute of Pharmacal Research, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
8
|
Cunnea P, Curry EW, Christie EL, Nixon K, Kwok CH, Pandey A, Wulandari R, Thol K, Ploski J, Morera-Albert C, McQuaid S, Lozano-Kuehne J, Clark JJ, Krell J, Stronach EA, McNeish IA, Bowtell DDL, Fotopoulou C. Spatial and temporal intra-tumoral heterogeneity in advanced HGSOC: Implications for surgical and clinical outcomes. Cell Rep Med 2023:101055. [PMID: 37220750 DOI: 10.1016/j.xcrm.2023.101055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Limited evidence exists on the impact of spatial and temporal heterogeneity of high-grade serous ovarian cancer (HGSOC) on tumor evolution, clinical outcomes, and surgical operability. We perform systematic multi-site tumor mapping at presentation and matched relapse from 49 high-tumor-burden patients, operated up front. From SNP array-derived copy-number data, we categorize dendrograms representing tumor clonal evolution as sympodial or dichotomous, noting most chemo-resistant patients favor simpler sympodial evolution. Three distinct tumor evolutionary patterns from primary to relapse are identified, demonstrating recurrent disease may emerge from pre-existing or newly detected clones. Crucially, we identify spatial heterogeneity for clinically actionable homologous recombination deficiency scores and for poor prognosis biomarkers CCNE1 and MYC. Copy-number signature, phenotypic, proteomic, and proliferative-index heterogeneity further highlight HGSOC complexity. This study explores HGSOC evolution and dissemination across space and time, its impact on optimal surgical cytoreductive effort and clinical outcomes, and its consequences for clinical decision-making.
Collapse
Affiliation(s)
- Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK.
| | - Edward W Curry
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Katherine Nixon
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Chun Hei Kwok
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ratri Wulandari
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Kerstin Thol
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jennifer Ploski
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Cristina Morera-Albert
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | | | - Jingky Lozano-Kuehne
- Experimental Cancer Medicine Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - James J Clark
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Euan A Stronach
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Iain A McNeish
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK; West London Gynaecological Cancer Centre, Imperial College NHS Trust, London W12 0HS, UK.
| |
Collapse
|
9
|
Schmidt H, Sashittal P, Raphael BJ. A zero-agnostic model for copy number evolution in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536302. [PMID: 37090633 PMCID: PMC10120719 DOI: 10.1101/2023.04.10.536302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Motivation New low-coverage single-cell DNA sequencing technologies enable the measurement of copy number profiles from thousands of individual cells within tumors. From this data, one can infer the evolutionary history of the tumor by modeling transformations of the genome via copy number aberrations. A widely used model to infer such copy number phylogenies is the copy number transformation (CNT) model in which a genome is represented by an integer vector and a copy number aberration is an event that either increases or decreases the number of copies of a contiguous segment of the genome. The CNT distance between a pair of copy number profiles is the minimum number of events required to transform one profile to another. While this distance can be computed efficiently, no efficient algorithm has been developed to find the most parsimonious phylogeny under the CNT model. Results We introduce the zero-agnostic copy number transformation (ZCNT) model, a simplification of the CNT model that allows the amplification or deletion of regions with zero copies. We derive a closed form expression for the ZCNT distance between two copy number profiles and show that, unlike the CNT distance, the ZCNT distance forms a metric. We leverage the closed-form expression for the ZCNT distance and an alternative characterization of copy number profiles to derive polynomial time algorithms for two natural relaxations of the small parsimony problem on copy number profiles. While the alteration of zero copy number regions allowed under the ZCNT model is not biologically realistic, we show on both simulated and real datasets that the ZCNT distance is a close approximation to the CNT distance. Extending our polynomial time algorithm for the ZCNT small parsimony problem, we develop an algorithm, Lazac, for solving the large parsimony problem on copy number profiles. We demonstrate that Lazac outperforms existing methods for inferring copy number phylogenies on both simulated and real data.
Collapse
Affiliation(s)
- Henri Schmidt
- Department of Computer Science, Princeton University, NJ, USA
| | | | | |
Collapse
|
10
|
Funnell T, O’Flanagan CH, Williams MJ, McPherson A, McKinney S, Kabeer F, Lee H, Salehi S, Vázquez-García I, Shi H, Leventhal E, Masud T, Eirew P, Yap D, Zhang AW, Lim JLP, Wang B, Brimhall J, Biele J, Ting J, Au V, Van Vliet M, Liu YF, Beatty S, Lai D, Pham J, Grewal D, Abrams D, Havasov E, Leung S, Bojilova V, Moore RA, Rusk N, Uhlitz F, Ceglia N, Weiner AC, Zaikova E, Douglas JM, Zamarin D, Weigelt B, Kim SH, Da Cruz Paula A, Reis-Filho JS, Martin SD, Li Y, Xu H, de Algara TR, Lee SR, Llanos VC, Huntsman DG, McAlpine JN, Shah SP, Aparicio S, Cannell IG, Casbolt H, Jauset C, Kovačević T, Mulvey CM, Nugent F, Ribes MP, Pearson I, Qosaj F, Sawicka K, Wild SA, Williams E, Laks E, Smith A, Lai D, Roth A, Balasubramanian S, Lee M, Bodenmiller B, Burger M, Kuett L, Tietscher S, Windhager J, Boyden ES, Alon S, Cui Y, Emenari A, Goodwin DR, Karagiannis ED, Sinha A, Wassie AT, Caldas C, Bruna A, Callari M, Greenwood W, Lerda G, Eyal-Lubling Y, Rueda OM, Shea A, Harris O, Becker R, Grimaldo F, Harris S, Vogl SL, Joyce JA, Watson SS, Tavare S, et alFunnell T, O’Flanagan CH, Williams MJ, McPherson A, McKinney S, Kabeer F, Lee H, Salehi S, Vázquez-García I, Shi H, Leventhal E, Masud T, Eirew P, Yap D, Zhang AW, Lim JLP, Wang B, Brimhall J, Biele J, Ting J, Au V, Van Vliet M, Liu YF, Beatty S, Lai D, Pham J, Grewal D, Abrams D, Havasov E, Leung S, Bojilova V, Moore RA, Rusk N, Uhlitz F, Ceglia N, Weiner AC, Zaikova E, Douglas JM, Zamarin D, Weigelt B, Kim SH, Da Cruz Paula A, Reis-Filho JS, Martin SD, Li Y, Xu H, de Algara TR, Lee SR, Llanos VC, Huntsman DG, McAlpine JN, Shah SP, Aparicio S, Cannell IG, Casbolt H, Jauset C, Kovačević T, Mulvey CM, Nugent F, Ribes MP, Pearson I, Qosaj F, Sawicka K, Wild SA, Williams E, Laks E, Smith A, Lai D, Roth A, Balasubramanian S, Lee M, Bodenmiller B, Burger M, Kuett L, Tietscher S, Windhager J, Boyden ES, Alon S, Cui Y, Emenari A, Goodwin DR, Karagiannis ED, Sinha A, Wassie AT, Caldas C, Bruna A, Callari M, Greenwood W, Lerda G, Eyal-Lubling Y, Rueda OM, Shea A, Harris O, Becker R, Grimaldo F, Harris S, Vogl SL, Joyce JA, Watson SS, Tavare S, Dinh KN, Fisher E, Kunes R, Walton NA, Al Sa’d M, Chornay N, Dariush A, González-Solares EA, González-Fernández C, Yoldaş AK, Miller N, Zhuang X, Fan J, Lee H, Sepúlveda LA, Xia C, Zheng P, Shah SP, Aparicio S. Single-cell genomic variation induced by mutational processes in cancer. Nature 2022; 612:106-115. [PMID: 36289342 PMCID: PMC9712114 DOI: 10.1038/s41586-022-05249-0] [Show More Authors] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.
Collapse
Affiliation(s)
- Tyler Funnell
- grid.5386.8000000041936877XTri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY USA ,grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ciara H. O’Flanagan
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Marc J. Williams
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Andrew McPherson
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Steven McKinney
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Farhia Kabeer
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia Canada
| | - Hakwoo Lee
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia Canada
| | - Sohrab Salehi
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ignacio Vázquez-García
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Hongyu Shi
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Emily Leventhal
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Tehmina Masud
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Peter Eirew
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Damian Yap
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Allen W. Zhang
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Jamie L. P. Lim
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Beixi Wang
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Jazmine Brimhall
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Justina Biele
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Jerome Ting
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Vinci Au
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Michael Van Vliet
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Yi Fei Liu
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Sean Beatty
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Daniel Lai
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia Canada
| | - Jenifer Pham
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Diljot Grewal
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Douglas Abrams
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Eliyahu Havasov
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Samantha Leung
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Viktoria Bojilova
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Richard A. Moore
- grid.434706.20000 0004 0410 5424Michael Smith Genome Sciences Centre, Vancouver, British Columbia Canada
| | - Nicole Rusk
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Florian Uhlitz
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Nicholas Ceglia
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Adam C. Weiner
- grid.5386.8000000041936877XTri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY USA ,grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Elena Zaikova
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - J. Maxwell Douglas
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Dmitriy Zamarin
- grid.51462.340000 0001 2171 9952GYN Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Britta Weigelt
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Sarah H. Kim
- grid.51462.340000 0001 2171 9952Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Arnaud Da Cruz Paula
- grid.51462.340000 0001 2171 9952Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Jorge S. Reis-Filho
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Spencer D. Martin
- grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia Canada
| | - Yangguang Li
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Hong Xu
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Teresa Ruiz de Algara
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - So Ra Lee
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - Viviana Cerda Llanos
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada
| | - David G. Huntsman
- grid.248762.d0000 0001 0702 3000Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia Canada
| | - Jessica N. McAlpine
- grid.17091.3e0000 0001 2288 9830Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, British Columbia Canada
| | | | - Sohrab P. Shah
- grid.51462.340000 0001 2171 9952Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fu X, Lei H, Tao Y, Heselmeyer-haddad K, Torres I, Dean M, Ried T, Schwartz R. Joint Clustering of Single-Cell Sequencing and Fluorescence In Situ Hybridization Data for Reconstructing Clonal Heterogeneity in Cancers. J Comput Biol 2021; 28:1035-1051. [PMID: 34612714 PMCID: PMC8819512 DOI: 10.1089/cmb.2021.0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aneuploidy and whole genome duplication (WGD) events are common features of cancers associated with poor outcomes, but the ways they influence trajectories of clonal evolution are poorly understood. Phylogenetic methods for reconstructing clonal evolution from genomic data have proven a powerful tool for understanding how clonal evolution occurs in the process of cancer progression, but extant methods so far have limited the ability to resolve tumor evolution via ploidy changes. This limitation exists in part because single-cell DNA-sequencing (scSeq), which has been crucial to developing detailed profiles of clonal evolution, has difficulty in resolving ploidy changes and WGD. Multiplex interphase fluorescence in situ hybridization (miFISH) provides a more unambiguous signal of single-cell ploidy changes but it is limited to profiling small numbers of single markers. Here, we develop a joint clustering method to combine these two data sources with the goal of better resolving ploidy changes in tumor evolution. We develop a probabilistic framework to maximize the probability of latent variables given the pre-clustered datasets, which we optimize via Markov chain Monte Carlo sampling combined with linear regression. We validate the method by using simulated data derived from a glioblastoma (GBM) case profiled by both scSeq and miFISH. We further apply the method to two GBM cases with scSeq and miFISH data by reconstructing a phylogenetic tree from the joint clustering results, demonstrating their synergistic value in understanding how focal copy number changes and WGD events can collectively contribute to tumor progression.
Collapse
Affiliation(s)
- Xuecong Fu
- Department of Biological Sciences, and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Haoyun Lei
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Yifeng Tao
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kerstin Heselmeyer-haddad
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Irianna Torres
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Thomas Ried
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Schwartz
- Department of Biological Sciences, and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|