1
|
Abir AR, Tahmid MT, Rayan RI, Rahman MS. DeepRNA-Twist: language-model-guided RNA torsion angle prediction with attention-inception network. Brief Bioinform 2025; 26:bbaf199. [PMID: 40315431 PMCID: PMC12047705 DOI: 10.1093/bib/bbaf199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 05/04/2025] Open
Abstract
RNA torsion and pseudo-torsion angles are critical in determining the three-dimensional conformation of RNA molecules, which in turn governs their biological functions. However, current methods are limited by RNA's structural complexity as well as flexibility, with experimental techniques being costly and computational approaches struggling to capture the intricate sequence dependencies needed for accurate predictions. To address these challenges, we introduce DeepRNA-Twist, a novel deep learning framework designed to predict RNA torsion and pseudo-torsion angles directly from sequence. DeepRNA-Twist utilizes RNA language model embeddings, which provides rich, context-aware feature representations of RNA sequences. Additionally, it introduces 2A3IDC module (Attention Augmented Inception Inside Inception with Dilated CNN), combining inception networks with dilated convolutions and multi-head attention mechanism. The dilated convolutions capture long-range dependencies in the sequence without requiring a large number of parameters, while the multi-head attention mechanism enhances the model's ability to focus on both local and global structural features simultaneously. DeepRNA-Twist was rigorously evaluated on benchmark datasets, including RNA-Puzzles, CASP-RNA, and SPOT-RNA-1D, and demonstrated significant improvements over existing methods, achieving state-of-the-art accuracy. Source code is available at https://github.com/abrarrahmanabir/DeepRNA-Twist.
Collapse
Affiliation(s)
- Abrar Rahman Abir
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Toki Tahmid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Rafiqul Islam Rayan
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - M Saifur Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
2
|
Tahmid MT, Hasan AKMM, Bayzid MS. TransBind allows precise detection of DNA-binding proteins and residues using language models and deep learning. Commun Biol 2025; 8:568. [PMID: 40185915 PMCID: PMC11971327 DOI: 10.1038/s42003-025-07534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/13/2025] [Indexed: 04/07/2025] Open
Abstract
Identifying DNA-binding proteins and their binding residues is critical for understanding diverse biological processes, but conventional experimental approaches are slow and costly. Existing machine learning methods, while faster, often lack accuracy and struggle with data imbalance, relying heavily on evolutionary profiles like PSSMs and HMMs derived from multiple sequence alignments (MSAs). These dependencies make them unsuitable for orphan proteins or those that evolve rapidly. To address these challenges, we introduce TransBind, an alignment-free deep learning framework that predicts DNA-binding proteins and residues directly from a single primary sequence, eliminating the need for MSAs. By leveraging features from pre-trained protein language models, TransBind effectively handles the issue of data imbalance and achieves superior performance. Extensive evaluations using diverse experimental datasets and case studies demonstrate that TransBind significantly outperforms state-of-the-art methods in terms of both accuracy and computational efficiency. TransBind is available as a web server at https://trans-bind-web-server-frontend.vercel.app/ .
Collapse
Affiliation(s)
- Md Toki Tahmid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - A K M Mehedi Hasan
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
| |
Collapse
|
3
|
Zhang J, Qian J, Zou Q, Zhou F, Kurgan L. Recent Advances in Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences. Methods Mol Biol 2025; 2870:1-19. [PMID: 39543027 DOI: 10.1007/978-1-0716-4213-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The secondary structures (SSs) and supersecondary structures (SSSs) underlie the three-dimensional structure of proteins. Prediction of the SSs and SSSs from protein sequences enjoys high levels of use and finds numerous applications in the development of a broad range of other bioinformatics tools. Numerous sequence-based predictors of SS and SSS were developed and published in recent years. We survey and analyze 45 SS predictors that were released since 2018, focusing on their inputs, predictive models, scope of their prediction, and availability. We also review 32 sequence-based SSS predictors, which primarily focus on predicting coiled coils and beta-hairpins and which include five methods that were published since 2018. Substantial majority of these predictive tools rely on machine learning models, including a variety of deep neural network architectures. They also frequently use evolutionary sequence profiles. We discuss details of several modern SS and SSS predictors that are currently available to the users and which were published in higher impact venues.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| | - Jingjing Qian
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Feng Zhou
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Lukasz Kurgan
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Virginia, VA, USA.
| |
Collapse
|
4
|
Yang W, Wei S, Zhang L. Parameterized hypercomplex convolutional network for accurate protein backbone torsion angle prediction. Sci Rep 2024; 14:27193. [PMID: 39516218 PMCID: PMC11549290 DOI: 10.1038/s41598-024-77412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Predicting the backbone torsion angles corresponding to each residue of a protein from its amino acid sequence alone is a challenging problem in computational biology. Existing torsion angle predictors mainly use profile features, which are generated by performing time-consuming multiple sequence alignments, for torsion angle prediction. Compared with traditional profile features, embedding features from pretrained protein language models have significant advantages in prediction performance and computational speed. However, embedding features usually have higher dimensions and different embedding features have significantly different dimensions. To this end, we design a novel parameter-efficient deep torsion angle predictor, PHAngle, specifically for embedding features. PHAngle is a parameterized hypercomplex convolutional network consisting of parameterized hypercomplex linear and convolutional layers whose weight parameters can be characterized as the sum of Kronecker products. Experimental results on six benchmark test sets including TEST2016, TEST2018, TEST2020_HQ, CASP12, CASP13 and CASP-FM demonstrate that PHAngle achieves the state-of-the-art torsion angle performance with the fewest parameters compared to the nine existing methods. The source code and datasets are available at https://github.com/fengtuan/PHAngle .
Collapse
Affiliation(s)
- Wei Yang
- Henan Key Laboratory of Big Data Analysis and Processing, Henan Engineering Laboratory of Spatial Information Processing, School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China
| | - Shujia Wei
- Henan Key Laboratory of Big Data Analysis and Processing, Henan Engineering Laboratory of Spatial Information Processing, School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China
| | - Lei Zhang
- Henan Key Laboratory of Big Data Analysis and Processing, Henan Engineering Laboratory of Spatial Information Processing, School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Zhang B, Zheng M, Zhang Y, Quan L. DCMA: faster protein backbone dihedral angle prediction using a dilated convolutional attention-based neural network. FRONTIERS IN BIOINFORMATICS 2024; 4:1477909. [PMID: 39493577 PMCID: PMC11527783 DOI: 10.3389/fbinf.2024.1477909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The dihedral angle of the protein backbone can describe the main structure of the protein, which is of great significance for determining the protein structure. Many computational methods have been proposed to predict this critically important protein structure, including deep learning. However, these heavyweight methods require more computational resources, and the training time becomes intolerable. In this article, we introduce a novel lightweight method, named dilated convolution and multi-head attention (DCMA), that predicts protein backbone torsion dihedral angles ( ϕ , ψ ) . DCMA is stacked by five layers of two hybrid inception blocks and one multi-head attention block (I2A1) module. The hybrid inception blocks consisting of multi-scale convolutional neural networks and dilated convolutional neural networks are designed for capturing local and long-range sequence-based features. The multi-head attention block supplementally strengthens this operation. The proposed DCMA is validated on public critical assessment of protein structure prediction (CASP) benchmark datasets. Experimental results show that DCMA obtains better or comparable generalization performance. Compared to best-so-far methods, which are mostly ensemble models and constructed of recurrent neural networks, DCMA is an individual model that is more lightweight and has a shorter training time. The proposed model could be applied as an alternative method for predicting other protein structural features.
Collapse
Affiliation(s)
- Buzhong Zhang
- School of Computer and Information, Anqing Normal University, Anqing, China
- Jiangsu Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou, China
| | - Meili Zheng
- School of Computer and Information, Anqing Normal University, Anqing, China
| | - Yuzhou Zhang
- School of Information Engineering, Nanjing Xiaozhuang University, Nanjing, China
| | - Lijun Quan
- School of Computer Science and Technology, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Yu Z, Yu J, Wang H, Zhang S, Zhao L, Shi S. PhosAF: An integrated deep learning architecture for predicting protein phosphorylation sites with AlphaFold2 predicted structures. Anal Biochem 2024; 690:115510. [PMID: 38513769 DOI: 10.1016/j.ab.2024.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Phosphorylation is indispensable in comprehending biological processes, while biological experimental methods for identifying phosphorylation sites are tedious and arduous. With the rapid growth of biotechnology, deep learning methods have made significant progress in site prediction tasks. Nevertheless, most existing predictors only consider protein sequence information, that limits the capture of protein spatial information. Building upon the latest advancement in protein structure prediction by AlphaFold2, a novel integrated deep learning architecture PhosAF is developed to predict phosphorylation sites in human proteins by integrating CMA-Net and MFC-Net, which considers sequence and structure information predicted by AlphaFold2. Here, CMA-Net module is composed of multiple convolutional neural network layers and multi-head attention is appended to obtaining the local and long-term dependencies of sequence features. Meanwhile, the MFC-Net module composed of deep neural network layers is used to capture the complex representations of evolutionary and structure features. Furthermore, different features are combined to predict the final phosphorylation sites. In addition, we put forward a new strategy to construct reliable negative samples via protein secondary structures. Experimental results on independent test data and case study indicate that our model PhosAF surpasses the current most advanced methods in phosphorylation site prediction.
Collapse
Affiliation(s)
- Ziyuan Yu
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China.
| | - Jialin Yu
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China.
| | - Hongmei Wang
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China.
| | - Shuai Zhang
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China.
| | - Long Zhao
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China.
| | - Shaoping Shi
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China; Institute of Mathematics and Interdisciplinary Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
7
|
Saha G, Sawmya S, Saha A, Akil MA, Tasnim S, Rahman MS, Rahman MS. PRIEST: predicting viral mutations with immune escape capability of SARS-CoV-2 using temporal evolutionary information. Brief Bioinform 2024; 25:bbae218. [PMID: 38742520 PMCID: PMC11091746 DOI: 10.1093/bib/bbae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
The dynamic evolution of the severe acute respiratory syndrome coronavirus 2 virus is primarily driven by mutations in its genetic sequence, culminating in the emergence of variants with increased capability to evade host immune responses. Accurate prediction of such mutations is fundamental in mitigating pandemic spread and developing effective control measures. This study introduces a robust and interpretable deep-learning approach called PRIEST. This innovative model leverages time-series viral sequences to foresee potential viral mutations. Our comprehensive experimental evaluations underscore PRIEST's proficiency in accurately predicting immune-evading mutations. Our work represents a substantial step in utilizing deep-learning methodologies for anticipatory viral mutation analysis and pandemic response.
Collapse
Affiliation(s)
- Gourab Saha
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Shashata Sawmya
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Arpita Saha
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md Ajwad Akil
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Sadia Tasnim
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md Saifur Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - M Sohel Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
8
|
Lee M, Min K. AmorProt: Amino Acid Molecular Fingerprints Repurposing-Based Protein Fingerprint. Biochemistry 2023; 62:2700-2709. [PMID: 37622182 DOI: 10.1021/acs.biochem.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
As protein therapeutics play an important role in almost all medical fields, numerous studies have been conducted on proteins using artificial intelligence. Artificial intelligence has enabled data-driven predictions without the need for expensive experiments. Nevertheless, unlike the various molecular fingerprint algorithms that have been developed, protein fingerprint algorithms have rarely been studied. In this study, we proposed the amino acid molecular fingerprints repurposing-based protein (AmorProt) fingerprint, a protein sequence representation method that effectively uses the molecular fingerprints corresponding to 20 amino acids. Subsequently, the performances of the tree-based machine learning and artificial neural network models were compared using (1) amyloid classification and (2) isoelectric point regression. Finally, the applicability and advantages of the developed platform were demonstrated through a case study and the following experiments: (3) comparison of dataset dependence with feature-based methods, (4) feature importance analysis, and (5) protein space analysis. Consequently, the significantly improved model performance and data-set-independent versatility of the AmorProt fingerprint were verified. The results revealed that the current protein representation method can be applied to various fields related to proteins, such as predicting their fundamental properties or interaction with ligands.
Collapse
Affiliation(s)
- Myeonghun Lee
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Kyoungmin Min
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
9
|
S. G, E.R. V. Protein secondary structure prediction using Cascaded Feature Learning Model. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Yu Y, Ding P, Gao H, Liu G, Zhang F, Yu B. Cooperation of local features and global representations by a dual-branch network for transcription factor binding sites prediction. Brief Bioinform 2023; 24:7030619. [PMID: 36748992 DOI: 10.1093/bib/bbad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Interactions between DNA and transcription factors (TFs) play an essential role in understanding transcriptional regulation mechanisms and gene expression. Due to the large accumulation of training data and low expense, deep learning methods have shown huge potential in determining the specificity of TFs-DNA interactions. Convolutional network-based and self-attention network-based methods have been proposed for transcription factor binding sites (TFBSs) prediction. Convolutional operations are efficient to extract local features but easy to ignore global information, while self-attention mechanisms are expert in capturing long-distance dependencies but difficult to pay attention to local feature details. To discover comprehensive features for a given sequence as far as possible, we propose a Dual-branch model combining Self-Attention and Convolution, dubbed as DSAC, which fuses local features and global representations in an interactive way. In terms of features, convolution and self-attention contribute to feature extraction collaboratively, enhancing the representation learning. In terms of structure, a lightweight but efficient architecture of network is designed for the prediction, in particular, the dual-branch structure makes the convolution and the self-attention mechanism can be fully utilized to improve the predictive ability of our model. The experiment results on 165 ChIP-seq datasets show that DSAC obviously outperforms other five deep learning based methods and demonstrate that our model can effectively predict TFBSs based on sequence feature alone. The source code of DSAC is available at https://github.com/YuBinLab-QUST/DSAC/.
Collapse
Affiliation(s)
- Yutong Yu
- College of Information Science and Technology, Qingdao University of Science and Technology, China
| | - Pengju Ding
- College of Information Science and Technology, Qingdao University of Science and Technology, China
| | - Hongli Gao
- College of Mathematics and Physics, Qingdao University of Science and Technology, China
| | - Guozhu Liu
- College of Information Science and Technology, Qingdao University of Science and Technology, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, China
| | - Bin Yu
- College of Information Science and Technology, School of Data Science, Qingdao University of Science and Technology, China
| |
Collapse
|
11
|
Rashid S, Sundaram S, Kwoh CK. Empirical Study of Protein Feature Representation on Deep Belief Networks Trained With Small Data for Secondary Structure Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:955-966. [PMID: 35439138 DOI: 10.1109/tcbb.2022.3168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein secondary structure (SS) prediction is a classic problem of computational biology and is widely used in structural characterization and to infer homology. While most SS predictors have been trained on thousands of sequences, a previous approach had developed a compact model of training proteins that used a C-Alpha, C-Beta Side Chain (CABS)-algorithm derived energy based feature representation. Here, the previous approach is extended to Deep Belief Networks (DBN). Deep learning methods are notorious for requiring large datasets and there is a wide consensus that training deep models from scratch on small datasets, works poorly. By contrast, we demonstrate a simple DBN architecture containing a single hidden layer, trained only on the CB513 dataset. Testing on an independent set of G Switch proteins improved the Q 3 score of the previous compact model by almost 3%. The findings are further confirmed by comparison to several deep learning models which are trained on thousands of proteins. Finally, the DBN performance is also compared with Position Specific Scoring Matrix (PSSM)-profile based feature representation. The importance of (i) structural information in protein feature representation and (ii) complementary small dataset learning approaches for detection of structural fold switching are demonstrated.
Collapse
|
12
|
Gormez Y, Aydin Z. IGPRED-MultiTask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1104-1113. [PMID: 35849663 DOI: 10.1109/tcbb.2022.3191395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein secondary structure, solvent accessibility and torsion angle predictions are preliminary steps to predict 3D structure of a protein. Deep learning approaches have achieved significant improvements in predicting various features of protein structure. In this study, IGPRED-Multitask, a deep learning model with multi task learning architecture based on deep inception network, graph convolutional network and a bidirectional long short-term memory is proposed. Moreover, hyper-parameters of the model are fine-tuned using Bayesian optimization, which is faster and more effective than grid search. The same benchmark test data sets as in the OPUS-TASS paper including TEST2016, TEST2018, CASP12, CASP13, CASPFM, HARD68, CAMEO93, CAMEO93_HARD, as well as the train and validation sets, are used for fair comparison with the literature. Statistically significant improvements are observed in secondary structure prediction on 4 datasets, in phi angle prediction on 2 datasets and in psi angel prediction on 3 datasets compared to the state-of-the-art methods. For solvent accessibility prediction, TEST2016 and TEST2018 datasets are used only to assess the performance of the proposed model.
Collapse
|
13
|
Li S, Yuan L, Ma Y, Liu Y. WG-ICRN: Protein 8-state secondary structure prediction based on Wasserstein generative adversarial networks and residual networks with Inception modules. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:7721-7737. [PMID: 37161169 DOI: 10.3934/mbe.2023333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Protein secondary structure is the basis of studying the tertiary structure of proteins, drug design and development, and the 8-state protein secondary structure can provide more adequate protein information than the 3-state structure. Therefore, this paper proposes a novel method WG-ICRN for predicting protein 8-state secondary structures. First, we use the Wasserstein generative adversarial network (WGAN) to extract protein features in the position-specific scoring matrix (PSSM). The extracted features are combined with PSSM into a new feature set of WG-data, which contains richer feature information. Then, we use the residual network (ICRN) with Inception to further extract the features in WG-data and complete the prediction. Compared with the residual network, ICRN can reduce parameter calculations and increase the width of feature extraction to obtain more feature information. We evaluated the prediction performance of the model using six datasets. The experimental results show that the WGAN has excellent feature extraction capabilities, and ICRN can further improve network performance and improve prediction accuracy. Compared with four popular models, WG-ICRN achieves better prediction performance.
Collapse
Affiliation(s)
- Shun Li
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lu Yuan
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuming Ma
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yihui Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
14
|
Yuan L, Ma Y, Liu Y. Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory. Front Bioeng Biotechnol 2023; 11:1051268. [PMID: 36860882 PMCID: PMC9968878 DOI: 10.3389/fbioe.2023.1051268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Protein secondary structure prediction (PSSP) is a challenging task in computational biology. However, existing models with deep architectures are not sufficient and comprehensive for deep long-range feature extraction of long sequences. This paper proposes a novel deep learning model to improve Protein secondary structure prediction. In the model, our proposed bidirectional temporal convolutional network (BTCN) can extract the bidirectional deep local dependencies in protein sequences segmented by the sliding window technique, the bidirectional long short-term memory (BLSTM) network can extract the global interactions between residues, and our proposed multi-scale bidirectional temporal convolutional network (MSBTCN) can further capture the bidirectional multi-scale long-range features of residues while preserving the hidden layer information more comprehensively. In particular, we also propose that fusing the features of 3-state and 8-state Protein secondary structure prediction can further improve the prediction accuracy. Moreover, we also propose and compare multiple novel deep models by combining bidirectional long short-term memory with temporal convolutional network (TCN), reverse temporal convolutional network (RTCN), multi-scale temporal convolutional network (multi-scale bidirectional temporal convolutional network), bidirectional temporal convolutional network and multi-scale bidirectional temporal convolutional network, respectively. Furthermore, we demonstrate that the reverse prediction of secondary structure outperforms the forward prediction, suggesting that amino acids at later positions have a greater impact on secondary structure recognition. Experimental results on benchmark datasets including CASP10, CASP11, CASP12, CASP13, CASP14, and CB513 show that our methods achieve better prediction performance compared to five state-of-the-art methods.
Collapse
Affiliation(s)
- Lu Yuan
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuming Ma
- *Correspondence: Yuming Ma, ; Yihui Liu,
| | - Yihui Liu
- *Correspondence: Yuming Ma, ; Yihui Liu,
| |
Collapse
|
15
|
Wang F, Feng X, Kong R, Chang S. Generating new protein sequences by using dense network and attention mechanism. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4178-4197. [PMID: 36899622 DOI: 10.3934/mbe.2023195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein engineering uses de novo protein design technology to change the protein gene sequence, and then improve the physical and chemical properties of proteins. These newly generated proteins will meet the needs of research better in properties and functions. The Dense-AutoGAN model is based on GAN, which is combined with an Attention mechanism to generate protein sequences. In this GAN architecture, the Attention mechanism and Encoder-decoder can improve the similarity of generated sequences and obtain variations in a smaller range on the original basis. Meanwhile, a new convolutional neural network is constructed by using the Dense. The dense network transmits in multiple layers over the generator network of the GAN architecture, which expands the training space and improves the effectiveness of sequence generation. Finally, the complex protein sequences are generated on the mapping of protein functions. Through comparisons of other models, the generated sequences of Dense-AutoGAN verify the model performance. The new generated proteins are highly accurate and effective in chemical and physical properties.
Collapse
Affiliation(s)
- Feng Wang
- School of Computer Engineering, Suzhou Vocational University, Suzhou, China
- Information Engineering Department, Changzhou University Huaide College, Taizhou, China
| | - Xiaochen Feng
- Information Engineering Department, Changzhou University Huaide College, Taizhou, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
16
|
Yuan L, Ma Y, Liu Y. Protein secondary structure prediction based on Wasserstein generative adversarial networks and temporal convolutional networks with convolutional block attention modules. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2203-2218. [PMID: 36899529 DOI: 10.3934/mbe.2023102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important task in bioinformatics, protein secondary structure prediction (PSSP) is not only beneficial to protein function research and tertiary structure prediction, but also to promote the design and development of new drugs. However, current PSSP methods cannot sufficiently extract effective features. In this study, we propose a novel deep learning model WGACSTCN, which combines Wasserstein generative adversarial network with gradient penalty (WGAN-GP), convolutional block attention module (CBAM) and temporal convolutional network (TCN) for 3-state and 8-state PSSP. In the proposed model, the mutual game of generator and discriminator in WGAN-GP module can effectively extract protein features, and our CBAM-TCN local extraction module can capture key deep local interactions in protein sequences segmented by sliding window technique, and the CBAM-TCN long-range extraction module can further capture the key deep long-range interactions in sequences. We evaluate the performance of the proposed model on seven benchmark datasets. Experimental results show that our model exhibits better prediction performance compared to the four state-of-the-art models. The proposed model has strong feature extraction ability, which can extract important information more comprehensively.
Collapse
Affiliation(s)
- Lu Yuan
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuming Ma
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yihui Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
17
|
Yuan L, Hu X, Ma Y, Liu Y. DLBLS_SS: protein secondary structure prediction using deep learning and broad learning system. RSC Adv 2022; 12:33479-33487. [PMID: 36505696 PMCID: PMC9682407 DOI: 10.1039/d2ra06433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Protein secondary structure prediction (PSSP) is not only beneficial to the study of protein structure and function but also to the development of drugs. As a challenging task in computational biology, experimental methods for PSSP are time-consuming and expensive. In this paper, we propose a novel PSSP model DLBLS_SS based on deep learning and broad learning system (BLS) to predict 3-state and 8-state secondary structure. We first use a bidirectional long short-term memory (BLSTM) network to extract global features in residue sequences. Then, our proposed SEBTCN based on temporal convolutional networks (TCN) and channel attention can capture bidirectional key long-range dependencies in sequences. We also use BLS to rapidly optimize fused features while further capturing local interactions between residues. We conduct extensive experiments on public test sets including CASP10, CASP11, CASP12, CASP13, CASP14 and CB513 to evaluate the performance of the model. Experimental results show that our model exhibits better 3-state and 8-state PSSP performance compared to five state-of-the-art models.
Collapse
Affiliation(s)
- Lu Yuan
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Xiaopei Hu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yuming Ma
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yihui Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| |
Collapse
|
18
|
Ismi DP, Pulungan R, Afiahayati. Deep learning for protein secondary structure prediction: Pre and post-AlphaFold. Comput Struct Biotechnol J 2022; 20:6271-6286. [PMID: 36420164 PMCID: PMC9678802 DOI: 10.1016/j.csbj.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
This paper aims to provide a comprehensive review of the trends and challenges of deep neural networks for protein secondary structure prediction (PSSP). In recent years, deep neural networks have become the primary method for protein secondary structure prediction. Previous studies showed that deep neural networks had uplifted the accuracy of three-state secondary structure prediction to more than 80%. Favored deep learning methods, such as convolutional neural networks, recurrent neural networks, inception networks, and graph neural networks, have been implemented in protein secondary structure prediction. Methods adapted from natural language processing (NLP) and computer vision are also employed, including attention mechanism, ResNet, and U-shape networks. In the post-AlphaFold era, PSSP studies focus on different objectives, such as enhancing the quality of evolutionary information and exploiting protein language models as the PSSP input. The recent trend to utilize pre-trained language models as input features for secondary structure prediction provides a new direction for PSSP studies. Moreover, the state-of-the-art accuracy achieved by previous PSSP models is still below its theoretical limit. There are still rooms for improvement to be made in the field.
Collapse
Affiliation(s)
- Dewi Pramudi Ismi
- Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Infomatics, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Reza Pulungan
- Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Afiahayati
- Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
19
|
Mahbub S, Sawmya S, Saha A, Reaz R, Rahman MS, Bayzid MS. Quartet Based Gene Tree Imputation Using Deep Learning Improves Phylogenomic Analyses Despite Missing Data. JOURNAL OF COMPUTATIONAL BIOLOGY : A JOURNAL OF COMPUTATIONAL MOLECULAR CELL BIOLOGY 2022; 29:1156-1172. [PMID: 36048555 DOI: 10.1089/cmb.2022.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Species tree estimation is frequently based on phylogenomic approaches that use multiple genes from throughout the genome. However, for a combination of reasons (ranging from sampling biases to more biological causes, as in gene birth and loss), gene trees are often incomplete, meaning that not all species of interest have a common set of genes. Incomplete gene trees can potentially impact the accuracy of phylogenomic inference. We, for the first time, introduce the problem of imputing the quartet distribution induced by a set of incomplete gene trees, which involves adding the missing quartets back to the quartet distribution. We present Quartet based Gene tree Imputation using Deep Learning (QT-GILD), an automated and specially tailored unsupervised deep learning technique, accompanied by cues from natural language processing, which learns the quartet distribution in a given set of incomplete gene trees and generates a complete set of quartets accordingly. QT-GILD is a general-purpose technique needing no explicit modeling of the subject system or reasons for missing data or gene tree heterogeneity. Experimental studies on a collection of simulated and empirical datasets suggest that QT-GILD can effectively impute the quartet distribution, which results in a dramatic improvement in the species tree accuracy. Remarkably, QT-GILD not only imputes the missing quartets but can also account for gene tree estimation error. Therefore, QT-GILD advances the state-of-the-art in species tree estimation from gene trees in the face of missing data.
Collapse
Affiliation(s)
- Sazan Mahbub
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.,Department of Computer Science, University of Maryland, College Park, Maryland, USA
| | - Shashata Sawmya
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Arpita Saha
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Rezwana Reaz
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - M Sohel Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
20
|
Hong Y, Song J, Ko J, Lee J, Shin WH. S-Pred: protein structural property prediction using MSA transformer. Sci Rep 2022; 12:13891. [PMID: 35974061 PMCID: PMC9381718 DOI: 10.1038/s41598-022-18205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Predicting the local structural features of a protein from its amino acid sequence helps its function prediction to be revealed and assists in three-dimensional structural modeling. As the sequence-structure gap increases, prediction methods have been developed to bridge this gap. Additionally, as the size of the structural database and computing power increase, the performance of these methods have also significantly improved. Herein, we present a powerful new tool called S-Pred, which can predict eight-state secondary structures (SS8), accessible surface areas (ASAs), and intrinsically disordered regions (IDRs) from a given sequence. For feature prediction, S-Pred uses multiple sequence alignment (MSA) of a query sequence as an input. The MSA input is converted to features by the MSA Transformer, which is a protein language model that uses an attention mechanism. A long short-term memory (LSTM) was employed to produce the final prediction. The performance of S-Pred was evaluated on several test sets, and the program consistently provided accurate predictions. The accuracy of the SS8 prediction was approximately 76%, and the Pearson’s correlation between the experimental and predicted ASAs was 0.84. Additionally, an IDR could be accurately predicted with an F1-score of 0.514. The program is freely available at https://github.com/arontier/S_Pred_Paper and https://ad3.io as a code and a web server.
Collapse
Affiliation(s)
- Yiyu Hong
- Arontier Co., Seoul, 06735, Republic of Korea
| | - Jinung Song
- Arontier Co., Seoul, 06735, Republic of Korea
| | - Junsu Ko
- Arontier Co., Seoul, 06735, Republic of Korea
| | - Juyong Lee
- Arontier Co., Seoul, 06735, Republic of Korea.,Division of Chemistry and Biochemistry, Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Woong-Hee Shin
- Arontier Co., Seoul, 06735, Republic of Korea. .,Department of Chemistry Education, Sunchon National University, Suncheon, 57922, Republic of Korea. .,Department of Advanced Components and Materials Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
21
|
Jin X, Guo L, Jiang Q, Wu N, Yao S. Prediction of protein secondary structure based on an improved channel attention and multiscale convolution module. Front Bioeng Biotechnol 2022; 10:901018. [PMID: 35935483 PMCID: PMC9355137 DOI: 10.3389/fbioe.2022.901018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Prediction of the protein secondary structure is a key issue in protein science. Protein secondary structure prediction (PSSP) aims to construct a function that can map the amino acid sequence into the secondary structure so that the protein secondary structure can be obtained according to the amino acid sequence. Driven by deep learning, the prediction accuracy of the protein secondary structure has been greatly improved in recent years. To explore a new technique of PSSP, this study introduces the concept of an adversarial game into the prediction of the secondary structure, and a conditional generative adversarial network (GAN)-based prediction model is proposed. We introduce a new multiscale convolution module and an improved channel attention (ICA) module into the generator to generate the secondary structure, and then a discriminator is designed to conflict with the generator to learn the complicated features of proteins. Then, we propose a PSSP method based on the proposed multiscale convolution module and ICA module. The experimental results indicate that the conditional GAN-based protein secondary structure prediction (CGAN-PSSP) model is workable and worthy of further study because of the strong feature-learning ability of adversarial learning.
Collapse
Affiliation(s)
- Xin Jin
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, Yunnan, China
- School of Software, Yunnan University, Kunming, Yunnan, China
| | - Lin Guo
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, Yunnan, China
- School of Software, Yunnan University, Kunming, Yunnan, China
| | - Qian Jiang
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, Yunnan, China
- School of Software, Yunnan University, Kunming, Yunnan, China
| | - Nan Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, Yunnan, China
- School of Software, Yunnan University, Kunming, Yunnan, China
| | - Shaowen Yao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, Yunnan, China
- School of Software, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
22
|
Zhang X, Liu Y, Wang Y, Zhang L, Feng L, Jin B, Zhang H. Multistage Combination Classifier Augmented Model for Protein Secondary Structure Prediction. Front Genet 2022; 13:769828. [PMID: 35677562 PMCID: PMC9170271 DOI: 10.3389/fgene.2022.769828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of bioinformatics, understanding protein secondary structure is very important for exploring diseases and finding new treatments. Considering that the physical experiment-based protein secondary structure prediction methods are time-consuming and expensive, some pattern recognition and machine learning methods are proposed. However, most of the methods achieve quite similar performance, which seems to reach a model capacity bottleneck. As both model design and learning process can affect the model learning capacity, we pay attention to the latter part. To this end, a framework called Multistage Combination Classifier Augmented Model (MCCM) is proposed to solve the protein secondary structure prediction task. Specifically, first, a feature extraction module is introduced to extract features with different levels of learning difficulties. Second, multistage combination classifiers are proposed to learn decision boundaries for easy and hard samples, respectively, with the latter penalizing the loss value of the hard samples and finally improving the prediction performance of hard samples. Third, based on the Dirichlet distribution and information entropy measurement, a sample difficulty discrimination module is designed to assign samples with different learning difficulty levels to the aforementioned classifiers. The experimental results on the publicly available benchmark CB513 dataset show that our method outperforms most state-of-the-art models.
Collapse
Affiliation(s)
- Xu Zhang
- College of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Yiwei Liu
- School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian, China
| | - Yaming Wang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liang Zhang
- International Business School, Dongbei University of Finance and Economics, Dalian, China
| | - Lin Feng
- School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian, China
| | - Bo Jin
- School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian, China
- *Correspondence: Bo Jin,
| | - Hongzhe Zhang
- College of Mechanical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
23
|
Yang W, Liu Y, Xiao C. Deep metric learning for accurate protein secondary structure prediction. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Stapor K, Kotowski K, Smolarczyk T, Roterman I. Lightweight ProteinUnet2 network for protein secondary structure prediction: a step towards proper evaluation. BMC Bioinformatics 2022; 23:100. [PMID: 35317722 PMCID: PMC8939211 DOI: 10.1186/s12859-022-04623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background The prediction of protein secondary structures is a crucial and significant step for ab initio tertiary structure prediction which delivers the information about proteins activity and functions. As the experimental methods are expensive and sometimes impossible, many SS predictors, mainly based on different machine learning methods have been proposed for many years. Currently, most of the top methods use evolutionary-based input features produced by PSSM and HHblits software, although quite recently the embeddings—the new description of protein sequences generated by language models (LM) have appeared that could be leveraged as input features. Apart from input features calculation, the top models usually need extensive computational resources for training and prediction and are barely possible to run on a regular PC. SS prediction as the imbalanced classification problem should not be judged by the commonly used Q3/Q8 metrics. Moreover, as the benchmark datasets are not random samples, the classical statistical null hypothesis testing based on the Neyman–Pearson approach is not appropriate. Results We present a lightweight deep network ProteinUnet2 for SS prediction which is based on U-Net convolutional architecture and evolutionary-based input features (from PSSM and HHblits) as well as SPOT-Contact features. Through an extensive evaluation study, we report the performance of ProteinUnet2 in comparison with top SS prediction methods based on evolutionary information (SAINT and SPOT-1D). We also propose a new statistical methodology for prediction performance assessment based on the significance from Fisher–Pitman permutation tests accompanied by practical significance measured by Cohen’s effect size. Conclusions Our results suggest that ProteinUnet2 architecture has much shorter training and inference times while maintaining results similar to SAINT and SPOT-1D predictors. Taking into account the relatively long times of calculating evolutionary-based features (from PSSM in particular), it would be worth conducting the predictive ability tests on embeddings as input features in the future. We strongly believe that our proposed here statistical methodology for the evaluation of SS prediction results will be adopted and used (and even expanded) by the research community. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04623-z.
Collapse
Affiliation(s)
- Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
| | - Krzysztof Kotowski
- Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Tomasz Smolarczyk
- Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Medyczna 7, 30-688, Kraków, Poland
| |
Collapse
|
25
|
Enireddy V, Karthikeyan C, Babu DV. OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction. Soft comput 2022. [DOI: 10.1007/s00500-022-06783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Protein secondary structure prediction using a lightweight convolutional network and label distribution aware margin loss. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Mahbub S, Bayzid MS. EGRET: edge aggregated graph attention networks and transfer learning improve protein-protein interaction site prediction. Brief Bioinform 2022; 23:6518045. [PMID: 35106547 DOI: 10.1093/bib/bbab578] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Protein-protein interactions (PPIs) are central to most biological processes. However, reliable identification of PPI sites using conventional experimental methods is slow and expensive. Therefore, great efforts are being put into computational methods to identify PPI sites. RESULTS We present Edge Aggregated GRaph Attention NETwork (EGRET), a highly accurate deep learning-based method for PPI site prediction, where we have used an edge aggregated graph attention network to effectively leverage the structural information. We, for the first time, have used transfer learning in PPI site prediction. Our proposed edge aggregated network, together with transfer learning, has achieved notable improvement over the best alternate methods. Furthermore, we systematically investigated EGRET's network behavior to provide insights about the causes of its decisions. AVAILABILITY EGRET is freely available as an open source project at https://github.com/Sazan-Mahbub/EGRET. CONTACT shams_bayzid@cse.buet.ac.bd.
Collapse
Affiliation(s)
- Sazan Mahbub
- Department of Computer Science University of Maryland, College Park, Maryland 20742, USA
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| |
Collapse
|
28
|
Xu G, Wang Q, Ma J. OPUS-Rota4: a gradient-based protein side-chain modeling framework assisted by deep learning-based predictors. Brief Bioinform 2022; 23:bbab529. [PMID: 34905769 PMCID: PMC8769891 DOI: 10.1093/bib/bbab529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate protein side-chain modeling is crucial for protein folding and protein design. In the past decades, many successful methods have been proposed to address this issue. However, most of them depend on the discrete samples from the rotamer library, which may have limitations on their accuracies and usages. In this study, we report an open-source toolkit for protein side-chain modeling, named OPUS-Rota4. It consists of three modules: OPUS-RotaNN2, which predicts protein side-chain dihedral angles; OPUS-RotaCM, which measures the distance and orientation information between the side chain of different residue pairs and OPUS-Fold2, which applies the constraints derived from the first two modules to guide side-chain modeling. OPUS-Rota4 adopts the dihedral angles predicted by OPUS-RotaNN2 as its initial states, and uses OPUS-Fold2 to refine the side-chain conformation with the side-chain contact map constraints derived from OPUS-RotaCM. Therefore, we convert the side-chain modeling problem into a side-chain contact map prediction problem. OPUS-Fold2 is written in Python and TensorFlow2.4, which is user-friendly to include other differentiable energy terms. OPUS-Rota4 also provides a platform in which the side-chain conformation can be dynamically adjusted under the influence of other processes. We apply OPUS-Rota4 on 15 FM predictions submitted by AlphaFold2 on CASP14, the results show that the side chains modeled by OPUS-Rota4 are closer to their native counterparts than those predicted by AlphaFold2 (e.g. the residue-wise RMSD for all residues and core residues are 0.588 and 0.472 for AlphaFold2, and 0.535 and 0.407 for OPUS-Rota4).
Collapse
Affiliation(s)
- Gang Xu
- Multiscale Research Institute of Complex Systems Fudan University Shanghai, 200433, China
- Zhangjiang Fudan International Innovation Center Fudan University Shanghai, 201210, China
- Shanghai AI Laboratory Shanghai, 200030, China
| | - Qinghua Wang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine Houston, Texas 77030, United States
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems Fudan University Shanghai, 200433, China
- Zhangjiang Fudan International Innovation Center Fudan University Shanghai, 201210, China
- Shanghai AI Laboratory Shanghai, 200030, China
| |
Collapse
|
29
|
de Oliveira GB, Pedrini H, Dias Z. Ensemble of Template-Free and Template-Based Classifiers for Protein Secondary Structure Prediction. Int J Mol Sci 2021; 22:11449. [PMID: 34768880 PMCID: PMC8583764 DOI: 10.3390/ijms222111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Protein secondary structures are important in many biological processes and applications. Due to advances in sequencing methods, there are many proteins sequenced, but fewer proteins with secondary structures defined by laboratory methods. With the development of computer technology, computational methods have (started to) become the most important methodologies for predicting secondary structures. We evaluated two different approaches to this problem-driven by the recent results obtained by computational methods in this task-(i) template-free classifiers, based on machine learning techniques; and (ii) template-based classifiers, based on searching tools. Both approaches are formed by different sub-classifiers-six for template-free and two for template-based, each with a specific view of the protein. Our results show that these ensembles improve the results of each approach individually.
Collapse
|
30
|
Xu G, Wang Q, Ma J. OPUS-X: an open-source toolkit for protein torsion angles, secondary structure, solvent accessibility, contact map predictions and 3D folding. Bioinformatics 2021; 38:108-114. [PMID: 34478500 PMCID: PMC8696105 DOI: 10.1093/bioinformatics/btab633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION The development of an open-source platform to predict protein 1D features and 3D structure is an important task. In this paper, we report an open-source toolkit for protein 3D structure modeling, named OPUS-X. It contains three modules: OPUS-TASS2, which predicts protein torsion angles, secondary structure and solvent accessibility; OPUS-Contact, which measures the distance and orientation information between different residue pairs; and OPUS-Fold2, which uses the constraints derived from the first two modules to guide folding. RESULTS OPUS-TASS2 is an upgraded version of our previous method OPUS-TASS. OPUS-TASS2 integrates protein global structure information and significantly outperforms OPUS-TASS. OPUS-Contact combines multiple raw co-evolutionary features with protein 1D features predicted by OPUS-TASS2, and delivers better results than the open-source state-of-the-art method trRosetta. OPUS-Fold2 is a complementary version of our previous method OPUS-Fold. OPUS-Fold2 is a gradient-based protein folding framework based on the differentiable energy terms in opposed to OPUS-Fold that is a sampling-based method used to deal with the non-differentiable terms. OPUS-Fold2 exhibits comparable performance to the Rosetta folding protocol in trRosetta when using identical inputs. OPUS-Fold2 is written in Python and TensorFlow2.4, which is user-friendly to any source-code-level modification. AVAILABILITYAND IMPLEMENTATION The code and pre-trained models of OPUS-X can be downloaded from https://github.com/OPUS-MaLab/opus_x. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gang Xu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China,Shanghai AI Laboratory, Shanghai 200030, China
| | - Qinghua Wang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
31
|
Guo W, Liang W, Deng Q, Zou X. A Multimodal Affinity Fusion Network for Predicting the Survival of Breast Cancer Patients. Front Genet 2021; 12:709027. [PMID: 34490038 PMCID: PMC8417828 DOI: 10.3389/fgene.2021.709027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/29/2021] [Indexed: 01/27/2023] Open
Abstract
Accurate survival prediction of breast cancer holds significant meaning for improving patient care. Approaches using multiple heterogeneous modalities such as gene expression, copy number alteration, and clinical data have showed significant advantages over those with only one modality for patient survival prediction. However, existing survival prediction methods tend to ignore the structured information between patients and multimodal data. We propose a multimodal data fusion model based on a novel multimodal affinity fusion network (MAFN) for survival prediction of breast cancer by integrating gene expression, copy number alteration, and clinical data. First, a stack-based shallow self-attention network is utilized to guide the amplification of tiny lesion regions on the original data, which locates and enhances the survival-related features. Then, an affinity fusion module is proposed to map the structured information between patients and multimodal data. The module endows the network with a stronger fusion feature representation and discrimination capability. Finally, the fusion feature embedding and a specific feature embedding from a triple modal network are fused to make the classification of long-term survival or short-term survival for each patient. As expected, the evaluation results on comprehensive performance indicate that MAFN achieves better predictive performance than existing methods. Additionally, our method can be extended to the survival prediction of other cancer diseases, providing a new strategy for other diseases prognosis.
Collapse
Affiliation(s)
- Weizhou Guo
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Qingchun Deng
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Xianchun Zou
- College of Computer and Information Science, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Cretin G, Galochkina T, de Brevern AG, Gelly JC. PYTHIA: Deep Learning Approach for Local Protein Conformation Prediction. Int J Mol Sci 2021; 22:ijms22168831. [PMID: 34445537 PMCID: PMC8396346 DOI: 10.3390/ijms22168831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Protein Blocks (PBs) are a widely used structural alphabet describing local protein backbone conformation in terms of 16 possible conformational states, adopted by five consecutive amino acids. The representation of complex protein 3D structures as 1D PB sequences was previously successfully applied to protein structure alignment and protein structure prediction. In the current study, we present a new model, PYTHIA (predicting any conformation at high accuracy), for the prediction of the protein local conformations in terms of PBs directly from the amino acid sequence. PYTHIA is based on a deep residual inception-inside-inception neural network with convolutional block attention modules, predicting 1 of 16 PB classes from evolutionary information combined to physicochemical properties of individual amino acids. PYTHIA clearly outperforms the LOCUSTRA reference method for all PB classes and demonstrates great performance for PB prediction on particularly challenging proteins from the CASP14 free modelling category.
Collapse
Affiliation(s)
- Gabriel Cretin
- Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, 75015 Paris, France; (G.C.); (T.G.); (A.G.d.B.)
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Tatiana Galochkina
- Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, 75015 Paris, France; (G.C.); (T.G.); (A.G.d.B.)
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Alexandre G. de Brevern
- Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, 75015 Paris, France; (G.C.); (T.G.); (A.G.d.B.)
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Jean-Christophe Gelly
- Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, 75015 Paris, France; (G.C.); (T.G.); (A.G.d.B.)
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Correspondence:
| |
Collapse
|
33
|
Yang H, Wang M, Liu X, Zhao XM, Li A. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information. Bioinformatics 2021; 37:4668-4676. [PMID: 34320631 PMCID: PMC8665744 DOI: 10.1093/bioinformatics/btab551] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
Motivation Phosphorylation is one of the most studied post-translational modifications, which plays a pivotal role in various cellular processes. Recently, deep learning methods have achieved great success in prediction of phosphorylation sites, but most of them are based on convolutional neural network that may not capture enough information about long-range dependencies between residues in a protein sequence. In addition, existing deep learning methods only make use of sequence information for predicting phosphorylation sites, and it is highly desirable to develop a deep learning architecture that can combine heterogeneous sequence and protein–protein interaction (PPI) information for more accurate phosphorylation site prediction. Results We present a novel integrated deep neural network named PhosIDN, for phosphorylation site prediction by extracting and combining sequence and PPI information. In PhosIDN, a sequence feature encoding sub-network is proposed to capture not only local patterns but also long-range dependencies from protein sequences. Meanwhile, useful PPI features are also extracted in PhosIDN by a PPI feature encoding sub-network adopting a multi-layer deep neural network. Moreover, to effectively combine sequence and PPI information, a heterogeneous feature combination sub-network is introduced to fully exploit the complex associations between sequence and PPI features, and their combined features are used for final prediction. Comprehensive experiment results demonstrate that the proposed PhosIDN significantly improves the prediction performance of phosphorylation sites and compares favorably with existing general and kinase-specific phosphorylation site prediction methods. Availability and implementation PhosIDN is freely available at https://github.com/ustchangyuanyang/PhosIDN. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hangyuan Yang
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China
| | - Minghui Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China.,Centers for Biomedical Engineering, University of Science and Technology of China, Hefei AH230027, China
| | - Xia Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Frontiers Center for Brain Science, China.,Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China.,Centers for Biomedical Engineering, University of Science and Technology of China, Hefei AH230027, China
| |
Collapse
|
34
|
Lyu Z, Wang Z, Luo F, Shuai J, Huang Y. Protein Secondary Structure Prediction With a Reductive Deep Learning Method. Front Bioeng Biotechnol 2021; 9:687426. [PMID: 34211967 PMCID: PMC8240957 DOI: 10.3389/fbioe.2021.687426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Protein secondary structures have been identified as the links in the physical processes of primary sequences, typically random coils, folding into functional tertiary structures that enable proteins to involve a variety of biological events in life science. Therefore, an efficient protein secondary structure predictor is of importance especially when the structure of an amino acid sequence fragment is not solved by high-resolution experiments, such as X-ray crystallography, cryo-electron microscopy, and nuclear magnetic resonance spectroscopy, which are usually time consuming and expensive. In this paper, a reductive deep learning model MLPRNN has been proposed to predict either 3-state or 8-state protein secondary structures. The prediction accuracy by the MLPRNN on the publicly available benchmark CB513 data set is comparable with those by other state-of-the-art models. More importantly, taking into account the reductive architecture, MLPRNN could be a baseline for future developments.
Collapse
Affiliation(s)
- Zhiliang Lyu
- College of Computer Engineering, Jimei University, Xiamen, China
| | - Zhijin Wang
- College of Computer Engineering, Jimei University, Xiamen, China
| | - Fangfang Luo
- College of Computer Engineering, Jimei University, Xiamen, China
| | - Jianwei Shuai
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Yandong Huang
- College of Computer Engineering, Jimei University, Xiamen, China
| |
Collapse
|
35
|
Singh J, Paliwal K, Singh J, Zhou Y. RNA Backbone Torsion and Pseudotorsion Angle Prediction Using Dilated Convolutional Neural Networks. J Chem Inf Model 2021; 61:2610-2622. [PMID: 34037398 DOI: 10.1021/acs.jcim.1c00153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA three-dimensional structure prediction has been relied on using a predicted or experimentally determined secondary structure as a restraint to reduce the conformational sampling space. However, the secondary-structure restraints are limited to paired bases, and the conformational space of the ribose-phosphate backbone is still too large to be sampled efficiently. Here, we employed the dilated convolutional neural network to predict backbone torsion and pseudotorsion angles using a single RNA sequence as input. The method called SPOT-RNA-1D was trained on a high-resolution training data set and tested on three independent, nonredundant, and high-resolution test sets. The proposed method yields substantially smaller mean absolute errors than the baseline predictors based on random predictions and based on helix conformations according to actual angle distributions. The mean absolute errors for three test sets range from 14°-44° for different angles, compared to 17°-62° by random prediction and 14°-58° by helix prediction. The method also accurately recovers the overall patterns of single or pairwise angle distributions. In general, torsion angles further away from the bases and associated with unpaired bases and paired bases involved in tertiary interactions are more difficult to predict. Compared to the best models in RNA-puzzles experiments, SPOT-RNA-1D yielded more accurate dihedral angles and, thus, are potentially useful as model quality indicators and restraints for RNA structure prediction as in protein structure prediction.
Collapse
Affiliation(s)
- Jaswinder Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Queensland 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.,Peking University Shenzhen Graduate School, Shenzhen 518055, P.R. China
| |
Collapse
|
36
|
|
37
|
Nabi KN, Tahmid MT, Rafi A, Kader ME, Haider MA. Forecasting COVID-19 cases: A comparative analysis between recurrent and convolutional neural networks. RESULTS IN PHYSICS 2021; 24:104137. [PMID: 33898209 PMCID: PMC8054028 DOI: 10.1016/j.rinp.2021.104137] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Though many countries have already launched COVID-19 mass vaccination programs to control the disease outbreak quickly, numerous countries around worldwide are grappling with unprecedented surges of new COVID-19 cases due to a more contagious and deadly variant of coronavirus. As the number of new cases is skyrocketing, pandemic fatigue and public apathy towards different intervention strategies pose new challenges to government officials to combat the pandemic. Henceforth, it is indispensable for the government officials to understand the future dynamics of COVID-19 flawlessly to develop strategic preparedness and resilient response planning. In light of the above circumstances, probable future outbreak scenarios in Brazil, Russia, and the United kingdom have been sketched in this study with the help of four deep learning models: long short term memory (LSTM), gated recurrent unit (GRU), convolutional neural network (CNN) and multivariate convolutional neural network (MCNN). In our analysis, the CNN algorithm has outperformed other deep learning models in terms of validation accuracy and forecasting consistency. It is unearthed in our study that CNN can provide robust long-term forecasting results in time-series analysis due to its capability of essential features learning, distortion invariance, and temporal dependence learning. However, the prediction accuracy of the LSTM algorithm has been found to be poor as it tries to discover seasonality and periodic intervals from any time-series dataset, which were absent in our studied countries. Our study has highlighted the promising validation of using convolutional neural networks instead of recurrent neural networks when forecasting with very few features and less amount of historical data.
Collapse
Affiliation(s)
- Khondoker Nazmoon Nabi
- Department of Mathematics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Md Toki Tahmid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Abdur Rafi
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Muhammad Ehsanul Kader
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Md Asif Haider
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| |
Collapse
|
38
|
|
39
|
Xu G, Wang Q, Ma J. OPUS-Rota3: Improving Protein Side-Chain Modeling by Deep Neural Networks and Ensemble Methods. J Chem Inf Model 2020; 60:6691-6697. [PMID: 33211480 DOI: 10.1021/acs.jcim.0c00951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Side-chain modeling is critical for protein structure prediction since the uniqueness of the protein structure is largely determined by its side-chain packing conformation. In this paper, differing from most approaches that rely on rotamer library sampling, we first propose a novel side-chain rotamer prediction method based on deep neural networks, named OPUS-RotaNN. Then, on the basis of our previous work OPUS-Rota2, we propose an open-source side-chain modeling framework, OPUS-Rota3, which integrates the results of different methods into its rotamer library as the sampling candidates. By including OPUS-RotaNN into OPUS-Rota3, we conduct our experiments on three native backbone test sets and one non-native backbone test set. On the native backbone test set, CAMEO-Hard61 for example, OPUS-Rota3 successfully predicts 51.14% of all side-chain dihedral angles with a tolerance criterion of 20° and outperforms OSCAR-star (50.87%), SCWRL4 (50.40%), and FASPR (49.85%). On the non-native backbone test set DB379-ITASSER, the accuracy of OPUS-Rota3 is 52.49%, better than OSCAR-star (48.95%), FASPR (48.69%), and SCWRL4 (48.29%). All the source codes including the training codes and the data we used are available at https://github.com/thuxugang/opus_rota3.
Collapse
Affiliation(s)
- Gang Xu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| | - Qinghua Wang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030, United States
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030, United States.,Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
40
|
Karimi M, Wu D, Wang Z, Shen Y. Explainable Deep Relational Networks for Predicting Compound-Protein Affinities and Contacts. J Chem Inf Model 2020; 61:46-66. [PMID: 33347301 DOI: 10.1021/acs.jcim.0c00866] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Predicting compound-protein affinity is beneficial for accelerating drug discovery. Doing so without the often-unavailable structure data is gaining interest. However, recent progress in structure-free affinity prediction, made by machine learning, focuses on accuracy but leaves much to be desired for interpretability. Defining intermolecular contacts underlying affinities as a vehicle for interpretability; our large-scale interpretability assessment finds previously used attention mechanisms inadequate. We thus formulate a hierarchical multiobjective learning problem, where predicted contacts form the basis for predicted affinities. We solve the problem by embedding protein sequences (by hierarchical recurrent neural networks) and compound graphs (by graph neural networks) with joint attentions between protein residues and compound atoms. We further introduce three methodological advances to enhance interpretability: (1) structure-aware regularization of attentions using protein sequence-predicted solvent exposure and residue-residue contact maps; (2) supervision of attentions using known intermolecular contacts in training data; and (3) an intrinsically explainable architecture where atomic-level contacts or "relations" lead to molecular-level affinity prediction. The first two and all three advances result in DeepAffinity+ and DeepRelations, respectively. Our methods show generalizability in affinity prediction for molecules that are new and dissimilar to training examples. Moreover, they show superior interpretability compared to state-of-the-art interpretable methods: with similar or better affinity prediction, they boost the AUPRC of contact prediction by around 33-, 35-, 10-, and 9-fold for the default test, new-compound, new-protein, and both-new sets, respectively. We further demonstrate their potential utilities in contact-assisted docking, structure-free binding site prediction, and structure-activity relationship studies without docking. Our study represents the first model development and systematic model assessment dedicated to interpretable machine learning for structure-free compound-protein affinity prediction.
Collapse
Affiliation(s)
- Mostafa Karimi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Di Wu
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zhangyang Wang
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
41
|
Xu G, Wang Q, Ma J. OPUS-TASS: a protein backbone torsion angles and secondary structure predictor based on ensemble neural networks. Bioinformatics 2020; 36:5021-5026. [DOI: 10.1093/bioinformatics/btaa629] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Abstract
Motivation
Predictions of protein backbone torsion angles (ϕ and ψ) and secondary structure from sequence are crucial subproblems in protein structure prediction. With the development of deep learning approaches, their accuracies have been significantly improved. To capture the long-range interactions, most studies integrate bidirectional recurrent neural networks into their models. In this study, we introduce and modify a recently proposed architecture named Transformer to capture the interactions between the two residues theoretically with arbitrary distance. Moreover, we take advantage of multitask learning to improve the generalization of neural network by introducing related tasks into the training process. Similar to many previous studies, OPUS-TASS uses an ensemble of models and achieves better results.
Results
OPUS-TASS uses the same training and validation sets as SPOT-1D. We compare the performance of OPUS-TASS and SPOT-1D on TEST2016 (1213 proteins) and TEST2018 (250 proteins) proposed in the SPOT-1D paper, CASP12 (55 proteins), CASP13 (32 proteins) and CASP-FM (56 proteins) proposed in the SAINT paper, and a recently released PDB structure collection from CAMEO (93 proteins) named as CAMEO93. On these six test sets, OPUS-TASS achieves consistent improvements in both backbone torsion angles prediction and secondary structure prediction. On CAMEO93, SPOT-1D achieves the mean absolute errors of 16.89 and 23.02 for ϕ and ψ predictions, respectively, and the accuracies for 3- and 8-state secondary structure predictions are 87.72 and 77.15%, respectively. In comparison, OPUS-TASS achieves 16.56 and 22.56 for ϕ and ψ predictions, and 89.06 and 78.87% for 3- and 8-state secondary structure predictions, respectively. In particular, after using our torsion angles refinement method OPUS-Refine as the post-processing procedure for OPUS-TASS, the mean absolute errors for final ϕ and ψ predictions are further decreased to 16.28 and 21.98, respectively.
Availability and implementation
The training and the inference codes of OPUS-TASS and its data are available at https://github.com/thuxugang/opus_tass.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gang Xu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| | - Qinghua Wang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|