1
|
Schäfer RA, Yang R. A Comprehensive Benchmark of Tools for Efficient Genomic Interval Querying. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639167. [PMID: 40060661 PMCID: PMC11888206 DOI: 10.1101/2025.02.19.639167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Efficiently querying genomic intervals is fundamental to modern bioinformatics, enabling researchers to extract and analyze specific regions from large genomic datasets. While various tools have been developed for this purpose, there lacks a comprehensive comparison of their performance, memory usage, and practical utility. We present a systematic evaluation of genomic interval query tools using simulated datasets of varying sizes. Our benchmarking framework, segmeter, assesses both basic and complex interval queries, examining runtime performance, memory efficiency, and query precision across different tools and data structures. This comprehensive analysis provides insights into the strengths and limitations of different approaches to genomic interval querying, offering guidance for tool selection based on specific use cases and data requirements. The segmeter framework and all benchmark data are freely available, facilitating reproducibility and enabling researchers to conduct their own comparative analyses.
Collapse
Affiliation(s)
- Richard A Schäfer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Rendong Yang
- Department of Urology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
2
|
Pinatel E, Calcagnile M, Talà A, Damiano F, Siculella L, Peano C, De Benedetto GE, Pennetta A, De Bellis G, Alifano P. Interplay between non-coding RNA transcription, stringent phenotype and antibiotic production in Streptomyces. J Biotechnol 2022:S0168-1656(22)00029-3. [PMID: 35182607 DOI: 10.1016/j.jbiotec.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces, and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: i.) the wild type strain; ii.) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; iii.) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Institute of Genetic and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
| | | | - Antonio Pennetta
- Department of Cultural Heritage, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
3
|
Interplay between Non-Coding RNA Transcription, Stringent/Relaxed Phenotype and Antibiotic Production in Streptomyces ambofaciens. Antibiotics (Basel) 2021; 10:antibiotics10080947. [PMID: 34438997 PMCID: PMC8388888 DOI: 10.3390/antibiotics10080947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, “relaxed” phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a “stringent” RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
|