1
|
Qin S, Li W, Yu H, Xu M, Li C, Fu L, Sun S, He Y, Lv J, He W, Chen L. Guiding Drug Repositioning for Cancers Based on Drug Similarity Networks. Int J Mol Sci 2023; 24:ijms24032244. [PMID: 36768566 PMCID: PMC9917231 DOI: 10.3390/ijms24032244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Drug repositioning aims to discover novel clinical benefits of existing drugs, is an effective way to develop drugs for complex diseases such as cancer and may facilitate the process of traditional drug development. Meanwhile, network-based computational biology approaches, which allow the integration of information from different aspects to understand the relationships between biomolecules, has been successfully applied to drug repurposing. In this work, we developed a new strategy for network-based drug repositioning against cancer. Combining the mechanism of action and clinical efficacy of the drugs, a cancer-related drug similarity network was constructed, and the correlation score of each drug with a specific cancer was quantified. The top 5% of scoring drugs were reviewed for stability and druggable potential to identify potential repositionable drugs. Of the 11 potentially repurposable drugs for non-small cell lung cancer (NSCLC), 10 were confirmed by clinical trial articles and databases. The targets of these drugs were significantly enriched in cancer-related pathways and significantly associated with the prognosis of NSCLC. In light of the successful application of our approach to colorectal cancer as well, it provides an effective clue and valuable perspective for drug repurposing in cancer.
Collapse
Affiliation(s)
- Shimei Qin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongzheng Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shibin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150001, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
- Correspondence: ; Tel.: +86-451-8667-4768
| |
Collapse
|
2
|
Pilarczyk M, Fazel-Najafabadi M, Kouril M, Shamsaei B, Vasiliauskas J, Niu W, Mahi N, Zhang L, Clark NA, Ren Y, White S, Karim R, Xu H, Biesiada J, Bennett MF, Davidson SE, Reichard JF, Roberts K, Stathias V, Koleti A, Vidovic D, Clarke DJB, Schürer SC, Ma'ayan A, Meller J, Medvedovic M. Connecting omics signatures and revealing biological mechanisms with iLINCS. Nat Commun 2022; 13:4678. [PMID: 35945222 PMCID: PMC9362980 DOI: 10.1038/s41467-022-32205-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling.
Collapse
Affiliation(s)
- Marcin Pilarczyk
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Mehdi Fazel-Najafabadi
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Michal Kouril
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Behrouz Shamsaei
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Juozas Vasiliauskas
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Wen Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Naim Mahi
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Lixia Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Nicholas A Clark
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Yan Ren
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Shana White
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Rashid Karim
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Huan Xu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Mark F Bennett
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Sarah E Davidson
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - John F Reichard
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Kurt Roberts
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Vasileios Stathias
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Amar Koleti
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Dusica Vidovic
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Daniel J B Clarke
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephan C Schürer
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Avi Ma'ayan
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jarek Meller
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA.
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA.
- LINCS Data Coordination and Integration Center (DCIC), New York, USA.
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA.
| |
Collapse
|
3
|
Pham TH, Qiu Y, Liu J, Zimmer S, O’Neill E, Xie L, Zhang P. Chemical-induced gene expression ranking and its application to pancreatic cancer drug repurposing. PATTERNS 2022; 3:100441. [PMID: 35465231 PMCID: PMC9023899 DOI: 10.1016/j.patter.2022.100441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
Chemical-induced gene expression profiles provide critical information of chemicals in a biological system, thus offering new opportunities for drug discovery. Despite their success, large-scale analysis leveraging gene expressions is limited by time and cost. Although several methods for predicting gene expressions were proposed, they only focused on imputation and classification settings, which have limited applications to real-world scenarios of drug discovery. Therefore, a chemical-induced gene expression ranking (CIGER) framework is proposed to target a more realistic but more challenging setting in which overall rankings in gene expression profiles induced by de novo chemicals are predicted. The experimental results show that CIGER significantly outperforms existing methods in both ranking and classification metrics. Furthermore, a drug screening pipeline based on CIGER is proposed to identify potential treatments of drug-resistant pancreatic cancer. Our predictions have been validated by experiments, thereby showing the effectiveness of CIGER for phenotypic compound screening of precision medicine. A new deep-learning method (CIGER) for chemical-induced gene expression ranking CIGER can predict gene expression for de novo chemicals from chemical structures We discovered drugs for the treatment of drug-resistant pancreatic cancer
In recent years, a phenotype-based drug discovery approach using chemical-induced gene expressions has shown to be effective in drug discovery and precision medicine. However, it is not feasible to experimentally determine chemical-induced gene expressions for all available chemicals of interest, thereby hindering the application of gene expression-based compound screening on a large scale. Thus, it is crucial to design a computational approach that can generate gene expression information for any chemicals. We proposed a new, deep-learning framework named chemical-induced gene expression ranking (CIGER) to predict a landmark gene expression profile (i.e., gene ranking) induced by de novo chemicals based on their chemical structures. Leveraging CIGER, we predicted and experimentally validated that several existing drugs can increase the therapeutic response on drug-resistant pancreatic cancer. Our results demonstrated the effectiveness of CIGER for precision drug discovery in practice.
Collapse
Affiliation(s)
- Thai-Hoang Pham
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yue Qiu
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Jiahui Liu
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- EpiCombi.AI Therapeutics, Oxford OX7 3SB, UK
| | - Lei Xie
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, USA
- Ph.D. Program in Computer Science and Biochemistry, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ping Zhang
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
- Corresponding author
| |
Collapse
|
4
|
Vu V, Szewczyk MM, Nie DY, Arrowsmith CH, Barsyte-Lovejoy D. Validating Small Molecule Chemical Probes for Biological Discovery. Annu Rev Biochem 2022; 91:61-87. [PMID: 35363509 DOI: 10.1146/annurev-biochem-032620-105344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada;
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|