1
|
Zhang C, Wang Q, Li Y, Teng A, Hu G, Wuyun Q, Zheng W. The Historical Evolution and Significance of Multiple Sequence Alignment in Molecular Structure and Function Prediction. Biomolecules 2024; 14:1531. [PMID: 39766238 PMCID: PMC11673352 DOI: 10.3390/biom14121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sequence alignment (MSA) has evolved into a fundamental tool in the biological sciences, playing a pivotal role in predicting molecular structures and functions. With broad applications in protein and nucleic acid modeling, MSAs continue to underpin advancements across a range of disciplines. MSAs are not only foundational for traditional sequence comparison techniques but also increasingly important in the context of artificial intelligence (AI)-driven advancements. Recent breakthroughs in AI, particularly in protein and nucleic acid structure prediction, rely heavily on the accuracy and efficiency of MSAs to enhance remote homology detection and guide spatial restraints. This review traces the historical evolution of MSA, highlighting its significance in molecular structure and function prediction. We cover the methodologies used for protein monomers, protein complexes, and RNA, while also exploring emerging AI-based alternatives, such as protein language models, as complementary or replacement approaches to traditional MSAs in application tasks. By discussing the strengths, limitations, and applications of these methods, this review aims to provide researchers with valuable insights into MSA's evolving role, equipping them to make informed decisions in structural prediction research.
Collapse
Affiliation(s)
- Chenyue Zhang
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Qinxin Wang
- Suzhou New & High-Tech Innovation Service Center, Suzhou 215011, China;
| | - Yiyang Li
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Anqi Teng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China;
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Zheng
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Chen K, Litfin T, Singh J, Zhan J, Zhou Y. MARS and RNAcmap3: The Master Database of All Possible RNA Sequences Integrated with RNAcmap for RNA Homology Search. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae018. [PMID: 38872612 PMCID: PMC12053375 DOI: 10.1093/gpbjnl/qzae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/24/2023] [Accepted: 10/31/2023] [Indexed: 06/15/2024]
Abstract
Recent success of AlphaFold2 in protein structure prediction relied heavily on co-evolutionary information derived from homologous protein sequences found in the huge, integrated database of protein sequences (Big Fantastic Database). In contrast, the existing nucleotide databases were not consolidated to facilitate wider and deeper homology search. Here, we built a comprehensive database by incorporating the non-coding RNA (ncRNA) sequences from RNAcentral, the transcriptome assembly and metagenome assembly from metagenomics RAST (MG-RAST), the genomic sequences from Genome Warehouse (GWH), and the genomic sequences from MGnify, in addition to the nucleotide (nt) database and its subsets in National Center of Biotechnology Information (NCBI). The resulting Master database of All possible RNA sequences (MARS) is 20-fold larger than NCBI's nt database or 60-fold larger than RNAcentral. The new dataset along with a new split-search strategy allows a substantial improvement in homology search over existing state-of-the-art techniques. It also yields more accurate and more sensitive multiple sequence alignments (MSAs) than manually curated MSAs from Rfam for the majority of structured RNAs mapped to Rfam. The results indicate that MARS coupled with the fully automatic homology search tool RNAcmap will be useful for improved structural and functional inference of ncRNAs and RNA language models based on MSAs. MARS is accessible at https://ngdc.cncb.ac.cn/omix/release/OMIX003037, and RNAcmap3 is accessible at http://zhouyq-lab.szbl.ac.cn/download/.
Collapse
Affiliation(s)
- Ke Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Thomas Litfin
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jian Zhan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
3
|
Zhang Y, Lang M, Jiang J, Gao Z, Xu F, Litfin T, Chen K, Singh J, Huang X, Song G, Tian Y, Zhan J, Chen J, Zhou Y. Multiple sequence alignment-based RNA language model and its application to structural inference. Nucleic Acids Res 2024; 52:e3. [PMID: 37941140 PMCID: PMC10783488 DOI: 10.1093/nar/gkad1031] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
Compared with proteins, DNA and RNA are more difficult languages to interpret because four-letter coded DNA/RNA sequences have less information content than 20-letter coded protein sequences. While BERT (Bidirectional Encoder Representations from Transformers)-like language models have been developed for RNA, they are ineffective at capturing the evolutionary information from homologous sequences because unlike proteins, RNA sequences are less conserved. Here, we have developed an unsupervised multiple sequence alignment-based RNA language model (RNA-MSM) by utilizing homologous sequences from an automatic pipeline, RNAcmap, as it can provide significantly more homologous sequences than manually annotated Rfam. We demonstrate that the resulting unsupervised, two-dimensional attention maps and one-dimensional embeddings from RNA-MSM contain structural information. In fact, they can be directly mapped with high accuracy to 2D base pairing probabilities and 1D solvent accessibilities, respectively. Further fine-tuning led to significantly improved performance on these two downstream tasks compared with existing state-of-the-art techniques including SPOT-RNA2 and RNAsnap2. By comparison, RNA-FM, a BERT-based RNA language model, performs worse than one-hot encoding with its embedding in base pair and solvent-accessible surface area prediction. We anticipate that the pre-trained RNA-MSM model can be fine-tuned on many other tasks related to RNA structure and function.
Collapse
Affiliation(s)
- Yikun Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzen 518055, China
| | - Mei Lang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jiuhong Jiang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Zhiqiang Gao
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Fan Xu
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD 4215, Australia
| | - Ke Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jaswinder Singh
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | | | - Guoli Song
- Peng Cheng Laboratory, Shenzhen 518066, China
| | | | - Jian Zhan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Chen
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD 4215, Australia
| |
Collapse
|
4
|
Zhao Q, Mao Q, Zhao Z, Yuan W, He Q, Sun Q, Yao Y, Fan X. RNA independent fragment partition method based on deep learning for RNA secondary structure prediction. Sci Rep 2023; 13:2861. [PMID: 36801945 PMCID: PMC9938198 DOI: 10.1038/s41598-023-30124-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
The non-coding RNA secondary structure largely determines its function. Hence, accuracy in structure acquisition is of great importance. Currently, this acquisition primarily relies on various computational methods. The prediction of the structures of long RNA sequences with high precision and reasonable computational cost remains challenging. Here, we propose a deep learning model, RNA-par, which could partition an RNA sequence into several independent fragments (i-fragments) based on its exterior loops. Each i-fragment secondary structure predicted individually could be further assembled to acquire the complete RNA secondary structure. In the examination of our independent test set, the average length of the predicted i-fragments was 453 nt, which was considerably shorter than that of complete RNA sequences (848 nt). The accuracy of the assembled structures was higher than that of the structures predicted directly using the state-of-the-art RNA secondary structure prediction methods. This proposed model could serve as a preprocessing step for RNA secondary structure prediction for enhancing the predictive performance (especially for long RNA sequences) and reducing the computational cost. In the future, predicting the secondary structure of long-sequence RNA with high accuracy can be enabled by developing a framework combining RNA-par with various existing RNA secondary structure prediction algorithms. Our models, test codes and test data are provided at https://github.com/mianfei71/RNAPar .
Collapse
Affiliation(s)
- Qi Zhao
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169 Liaoning China
| | - Qian Mao
- grid.411356.40000 0000 9339 3042College of Light Industry, Liaoning University, Shenyang, 110036 Liaoning China
| | - Zheng Zhao
- grid.440686.80000 0001 0543 8253College of Artificial Intelligence, Dalian Maritime University, Dalian, 116026 Liaoning China
| | - Wenxuan Yuan
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169 Liaoning China
| | - Qiang He
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169 Liaoning China
| | - Qixuan Sun
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169 Liaoning China
| | - Yudong Yao
- grid.217309.e0000 0001 2180 0654Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 USA
| | - Xiaoya Fan
- School of Software, Dalian University of Technology, Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, 116620, Liaoning, China.
| |
Collapse
|
5
|
Zhou B, Ding M, Feng J, Ji B, Huang P, Zhang J, Yu X, Cao Z, Yang Y, Zhou Y, Wang J. EVlncRNA-Dpred: improved prediction of experimentally validated lncRNAs by deep learning. Brief Bioinform 2022; 24:6961472. [PMID: 36573492 PMCID: PMC9851331 DOI: 10.1093/bib/bbac583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) played essential roles in nearly every biological process and disease. Many algorithms were developed to distinguish lncRNAs from mRNAs in transcriptomic data and facilitated discoveries of more than 600 000 of lncRNAs. However, only a tiny fraction (<1%) of lncRNA transcripts (~4000) were further validated by low-throughput experiments (EVlncRNAs). Given the cost and labor-intensive nature of experimental validations, it is necessary to develop computational tools to prioritize those potentially functional lncRNAs because many lncRNAs from high-throughput sequencing (HTlncRNAs) could be resulted from transcriptional noises. Here, we employed deep learning algorithms to separate EVlncRNAs from HTlncRNAs and mRNAs. For overcoming the challenge of small datasets, we employed a three-layer deep-learning neural network (DNN) with a K-mer feature as the input and a small convolutional neural network (CNN) with one-hot encoding as the input. Three separate models were trained for human (h), mouse (m) and plant (p), respectively. The final concatenated models (EVlncRNA-Dpred (h), EVlncRNA-Dpred (m) and EVlncRNA-Dpred (p)) provided substantial improvement over a previous model based on support-vector-machines (EVlncRNA-pred). For example, EVlncRNA-Dpred (h) achieved 0.896 for the area under receiver-operating characteristic curve, compared with 0.582 given by sequence-based EVlncRNA-pred model. The models developed here should be useful for screening lncRNA transcripts for experimental validations. EVlncRNA-Dpred is available as a web server at https://www.sdklab-biophysics-dzu.net/EVlncRNA-Dpred/index.html, and the data and source code can be freely available along with the web server.
Collapse
Affiliation(s)
- Bailing Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Maolin Ding
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Jing Feng
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Baohua Ji
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Pingping Huang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Junye Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xue Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Yaoqi Zhou
- Corresponding authors: Yaoqi Zhou, Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. Tel.: +86 (755) 6275 2684; E-mail: ; Jihua Wang, Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China. Tel.: +86 (534) 898 5933; E-mail:
| | - Jihua Wang
- Corresponding authors: Yaoqi Zhou, Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. Tel.: +86 (755) 6275 2684; E-mail: ; Jihua Wang, Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China. Tel.: +86 (534) 898 5933; E-mail:
| |
Collapse
|
6
|
Abstract
RNA molecules carry out various cellular functions, and understanding the mechanisms behind their functions requires the knowledge of their 3D structures. Different types of computational methods have been developed to model RNA 3D structures over the past decade. These methods were widely used by researchers although their performance needs to be further improved. Recently, along with these traditional methods, machine-learning techniques have been increasingly applied to RNA 3D structure prediction and show significant improvement in performance. Here we shall give a brief review of the traditional methods and recent related advances in machine-learning approaches for RNA 3D structure prediction.
Collapse
Affiliation(s)
- Xiujuan Ou
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Zhang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yiduo Xiong
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
7
|
rMSA: a sequence search and alignment algorithm to improve RNA structure modeling. J Mol Biol 2022. [DOI: 10.1016/j.jmb.2022.167904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Huang Y, Luo J, Jing R, Li M. Multi-model predictive analysis of RNA solvent accessibility based on modified residual attention mechanism. Brief Bioinform 2022; 23:6775603. [PMID: 36305428 DOI: 10.1093/bib/bbac470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Predicting RNA solvent accessibility using only primary sequence data can be regarded as sequence-based prediction work. Currently, the established studies for sequence-based RNA solvent accessibility prediction are limited due to the available number of datasets and black box prediction. To improve these issues, we first expanded the available RNA structures and then developed a sequence-based model using modified attention layers with different receptive fields to conform to the stem-loop structure of RNA chains. We measured the improvement with an extended dataset and further explored the model's interpretability by analysing the model structures, attention values and hyperparameters. Finally, we found that the developed model regarded the pieces of a sequence as templates during the training process. This work will be helpful for researchers who would like to build RNA attribute prediction models using deep learning in the future.
Collapse
Affiliation(s)
- Yuyao Huang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Runyu Jing
- School of Cyber Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
9
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
10
|
Predicting RNA solvent accessibility from multi-scale context feature via multi-shot neural network. Anal Biochem 2022; 654:114802. [PMID: 35809650 DOI: 10.1016/j.ab.2022.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
Knowledge of RNA solvent accessibility has recently become attractive due to the increasing awareness of its importance for key biological process. Accurately predicting the solvent accessibility of RNA is crucial for understanding its 3D structure and biological function. In this study, we develop a novel computational method, termed M2pred, for accurately predicting the solvent accessibility of RNA from sequence-based multi-scale context feature. In M2pred, three single-view features, i.e., base-pairing probabilities, position-specific frequency matrix, and a binary one-hot encoding, are first generated as three feature sources, and immediately concatenated to engender a super feature. Secondly, for the super feature, the matrix-format features of each nucleotide are extracted using an initialized sliding window technique, and regularly stacked into a cube-format feature. Then, using multi-scale context feature extraction strategy, a pyramid feature constructed of contextual feature of four scales related to target nucleotides is extracted from the cube-format feature. Finally, a customized multi-shot neural network framework, which is equipped with four different scales of receptive fields mainly integrating several residual attention blocks, is designed to dig discrimination information from the contextual pyramid feature. Experimental results demonstrate that the proposed M2pred achieve a high prediction performance and outperforms existing state-of-the-art prediction methods of RNA solvent accessibility.
Collapse
|
11
|
Singh J, Paliwal K, Litfin T, Singh J, Zhou Y. Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling. Bioinformatics 2022; 38:3900-3910. [PMID: 35751593 PMCID: PMC9364379 DOI: 10.1093/bioinformatics/btac421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recently, AlphaFold2 achieved high experimental accuracy for the majority of proteins in Critical Assessment of Structure Prediction (CASP 14). This raises the hope that one day, we may achieve the same feat for RNA structure prediction for those structured RNAs, which is as fundamentally and practically important similar to protein structure prediction. One major factor in the recent advancement of protein structure prediction is the highly accurate prediction of distance-based contact maps of proteins. RESULTS Here, we showed that by integrated deep learning with physics-inferred secondary structures, co-evolutionary information and multiple sequence-alignment sampling, we can achieve RNA contact-map prediction at a level of accuracy similar to that in protein contact-map prediction. More importantly, highly accurate prediction for top L long-range contacts can be assured for those RNAs with a high effective number of homologous sequences (Neff > 50). The initial use of the predicted contact map as distance-based restraints confirmed its usefulness in 3D structure prediction. AVAILABILITY AND IMPLEMENTATION SPOT-RNA-2D is available as a web server at https://sparks-lab.org/server/spot-rna-2d/ and as a standalone program at https://github.com/jaswindersingh2/SPOT-RNA-2D. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- To whom correspondence should be addressed. or or
| |
Collapse
|
12
|
Solayman M, Litfin T, Singh J, Paliwal K, Zhou Y, Zhan J. Probing RNA structures and functions by solvent accessibility: an overview from experimental and computational perspectives. Brief Bioinform 2022; 23:bbac112. [PMID: 35348613 PMCID: PMC9116373 DOI: 10.1093/bib/bbac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Characterizing RNA structures and functions have mostly been focused on 2D, secondary and 3D, tertiary structures. Recent advances in experimental and computational techniques for probing or predicting RNA solvent accessibility make this 1D representation of tertiary structures an increasingly attractive feature to explore. Here, we provide a survey of these recent developments, which indicate the emergence of solvent accessibility as a simple 1D property, adding to secondary and tertiary structures for investigating complex structure-function relations of RNAs.
Collapse
Affiliation(s)
- Md Solayman
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jian Zhan
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
13
|
Zhang C, Pyle AM. CSSR: assignment of secondary structure to coarse-grained RNA tertiary structures. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:466-471. [PMID: 35362469 PMCID: PMC8972804 DOI: 10.1107/s2059798322001292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
CSSR, an algorithm for assigning secondary structures to RNA 3D structures with missing atoms, has been developed. The base-pair assignment accuracy is close to 90% for 3D structures in which only one atom per nucleotide can be empirically identified. RNA secondary-structure (rSS) assignment is one of the most routine forms of analysis of RNA 3D structures. However, traditional rSS assignment programs require full-atomic structures of the individual RNA nucleotides. This prevents their application to the modeling of RNA structures in which base atoms are missing. To address this issue, Coarse-grained Secondary Structure of RNA (CSSR), an algorithm for the assignment of rSS for structures in which nucleobase atomic positions are incomplete, has been developed. Using CSSR, an rSS assignment accuracy of ∼90% is achieved even for RNA structures in which only one backbone atom per nucleotide is known. Thus, CSSR will be useful for the analysis of experimentally determined and computationally predicted RNA 3D structures alike. The source code of CSSR is available at https://github.com/pylelab/CSSR.
Collapse
|
14
|
Moffat L, Jones DT. Increasing the accuracy of single sequence prediction methods using a deep semi-supervised learning framework. Bioinformatics 2021; 37:3744-3751. [PMID: 34213528 PMCID: PMC8570780 DOI: 10.1093/bioinformatics/btab491] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Over the past 50 years, our ability to model protein sequences with evolutionary information has progressed in leaps and bounds. However, even with the latest deep learning methods, the modelling of a critically important class of proteins, single orphan sequences, remains unsolved. RESULTS By taking a bioinformatics approach to semi-supervised machine learning, we develop Profile Augmentation of Single Sequences (PASS), a simple but powerful framework for building accurate single-sequence methods. To demonstrate the effectiveness of PASS we apply it to the mature field of secondary structure prediction. In doing so we develop S4PRED, the successor to the open-source PSIPRED-Single method, which achieves an unprecedented Q3 score of 75.3% on the standard CB513 test. PASS provides a blueprint for the development of a new generation of predictive methods, advancing our ability to model individual protein sequences. AVAILABILITY AND IMPLEMENTATION The S4PRED model is available as open source software on the PSIPRED GitHub repository (https://github.com/psipred/s4pred), along with documentation. It will also be provided as a part of the PSIPRED web service (http://bioinf.cs.ucl.ac.uk/psipred/). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lewis Moffat
- Department of Computer Science, University College London, London WC1E 6BT, UK
- Biomedical Data Science Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David T Jones
- Department of Computer Science, University College London, London WC1E 6BT, UK
- Biomedical Data Science Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
15
|
Jiang Z, Xiao SR, Liu R. Dissecting and predicting different types of binding sites in nucleic acids based on structural information. Brief Bioinform 2021; 23:6384399. [PMID: 34624074 PMCID: PMC8769709 DOI: 10.1093/bib/bbab411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
The biological functions of DNA and RNA generally depend on their interactions with other molecules, such as small ligands, proteins and nucleic acids. However, our knowledge of the nucleic acid binding sites for different interaction partners is very limited, and identification of these critical binding regions is not a trivial work. Herein, we performed a comprehensive comparison between binding and nonbinding sites and among different categories of binding sites in these two nucleic acid classes. From the structural perspective, RNA may interact with ligands through forming binding pockets and contact proteins and nucleic acids using protruding surfaces, while DNA may adopt regions closer to the middle of the chain to make contacts with other molecules. Based on structural information, we established a feature-based ensemble learning classifier to identify the binding sites by fully using the interplay among different machine learning algorithms, feature spaces and sample spaces. Meanwhile, we designed a template-based classifier by exploiting structural conservation. The complementarity between the two classifiers motivated us to build an integrative framework for improving prediction performance. Moreover, we utilized a post-processing procedure based on the random walk algorithm to further correct the integrative predictions. Our unified prediction framework yielded promising results for different binding sites and outperformed existing methods.
Collapse
Affiliation(s)
- Zheng Jiang
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Si-Rui Xiao
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Rong Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
16
|
Singh J, Paliwal K, Singh J, Zhou Y. RNA Backbone Torsion and Pseudotorsion Angle Prediction Using Dilated Convolutional Neural Networks. J Chem Inf Model 2021; 61:2610-2622. [PMID: 34037398 DOI: 10.1021/acs.jcim.1c00153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA three-dimensional structure prediction has been relied on using a predicted or experimentally determined secondary structure as a restraint to reduce the conformational sampling space. However, the secondary-structure restraints are limited to paired bases, and the conformational space of the ribose-phosphate backbone is still too large to be sampled efficiently. Here, we employed the dilated convolutional neural network to predict backbone torsion and pseudotorsion angles using a single RNA sequence as input. The method called SPOT-RNA-1D was trained on a high-resolution training data set and tested on three independent, nonredundant, and high-resolution test sets. The proposed method yields substantially smaller mean absolute errors than the baseline predictors based on random predictions and based on helix conformations according to actual angle distributions. The mean absolute errors for three test sets range from 14°-44° for different angles, compared to 17°-62° by random prediction and 14°-58° by helix prediction. The method also accurately recovers the overall patterns of single or pairwise angle distributions. In general, torsion angles further away from the bases and associated with unpaired bases and paired bases involved in tertiary interactions are more difficult to predict. Compared to the best models in RNA-puzzles experiments, SPOT-RNA-1D yielded more accurate dihedral angles and, thus, are potentially useful as model quality indicators and restraints for RNA structure prediction as in protein structure prediction.
Collapse
Affiliation(s)
- Jaswinder Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Queensland 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.,Peking University Shenzhen Graduate School, Shenzhen 518055, P.R. China
| |
Collapse
|
17
|
Zhang T, Singh J, Litfin T, Zhan J, Paliwal K, Zhou Y. RNAcmap: A Fully Automatic Pipeline for Predicting Contact Maps of RNAs by Evolutionary Coupling Analysis. Bioinformatics 2021; 37:3494-3500. [PMID: 34021744 DOI: 10.1093/bioinformatics/btab391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analyses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016 families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based algorithm RNAfold and the latest deep-learning method SPOT-RNA. RESULTS We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool but is more dependent on the accuracy of secondary structure predictor with the best performance given by RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction. AVAILABILITY RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/ and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone. A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/r/jaswindersingh2/rnacmap.
Collapse
Affiliation(s)
- Tongchuan Zhang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Thomas Litfin
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
18
|
Singh J, Paliwal K, Zhang T, Singh J, Litfin T, Zhou Y. Improved RNA Secondary Structure and Tertiary Base-pairing Prediction Using Evolutionary Profile, Mutational Coupling and Two-dimensional Transfer Learning. Bioinformatics 2021; 37:2589-2600. [PMID: 33704363 DOI: 10.1093/bioinformatics/btab165] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION The recent discovery of numerous non-coding RNAs (long non-coding RNAs, in particular) has transformed our perception about the roles of RNAs in living organisms. Our ability to understand them, however, is hampered by our inability to solve their secondary and tertiary structures in high resolution efficiently by existing experimental techniques. Computational prediction of RNA secondary structure, on the other hand, has received much-needed improvement, recently, through deep learning of a large approximate data, followed by transfer learning with gold-standard base-pairing structures from high-resolution 3-D structures. Here, we expand this single-sequence-based learning to the use of evolutionary profiles and mutational coupling. RESULTS The new method allows large improvement not only in canonical base-pairs (RNA secondary structures) but more so in base-pairing associated with tertiary interactions such as pseudoknots, noncanonical and lone base-pairs. In particular, it is highly accurate for those RNAs of more than 1000 homologous sequences by achieving >0.8 F1-score (harmonic mean of sensitivity and precision) for 14/16 RNAs tested. The method can also significantly improve base-pairing prediction by incorporating artificial but functional homologous sequences generated from deep mutational scanning without any modification. The fully automatic method (publicly available as server and standalone software) should provide the scientific community a new powerful tool to capture not only the secondary structure but also tertiary base-pairing information for building three-dimensional models. It also highlights the future of accurately solving the base-pairing structure by using a large number of natural and/or artificial homologous sequences. AVAILABILITY Standalone-version of SPOT-RNA2 is available at https://github.com/jaswindersingh2/SPOT-RNA2. Direct prediction can also be made at https://sparks-lab.org/server/spot-rna2/. The datasets used in this research can also be downloaded from the GITHUB and the webserver mentioned above.
Collapse
Affiliation(s)
- Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Tongchuan Zhang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Thomas Litfin
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| |
Collapse
|
19
|
Zhou B, Ji B, Liu K, Hu G, Wang F, Chen Q, Yu R, Huang P, Ren J, Guo C, Zhao H, Zhang H, Zhao D, Li Z, Zeng Q, Yu J, Bian Y, Cao Z, Xu S, Yang Y, Zhou Y, Wang J. EVLncRNAs 2.0: an updated database of manually curated functional long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 2021; 49:D86-D91. [PMID: 33221906 PMCID: PMC7778902 DOI: 10.1093/nar/gkaa1076] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important functional roles in many diverse biological processes. However, not all expressed lncRNAs are functional. Thus, it is necessary to manually collect all experimentally validated functional lncRNAs (EVlncRNA) with their sequences, structures, and functions annotated in a central database. The first release of such a database (EVLncRNAs) was made using the literature prior to 1 May 2016. Since then (till 15 May 2020), 19 245 articles related to lncRNAs have been published. In EVLncRNAs 2.0, these articles were manually examined for a major expansion of the data collected. Specifically, the number of annotated EVlncRNAs, associated diseases, lncRNA-disease associations, and interaction records were increased by 260%, 320%, 484% and 537%, respectively. Moreover, the database has added several new categories: 8 lncRNA structures, 33 exosomal lncRNAs, 188 circular RNAs, and 1079 drug-resistant, chemoresistant, and stress-resistant lncRNAs. All records have checked against known retraction and fake articles. This release also comes with a highly interactive visual interaction network that facilitates users to track the underlying relations among lncRNAs, miRNAs, proteins, genes and other functional elements. Furthermore, it provides links to four new bioinformatics tools with improved data browsing and searching functionality. EVLncRNAs 2.0 is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs2/.
Collapse
Affiliation(s)
- Bailing Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Baohua Ji
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Kui Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Fei Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Ru Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Pingping Huang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jing Ren
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Chengang Guo
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Huiying Zhao
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hongmei Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Life Science, Dezhou University, Dezhou 253023, China
| | - Dongbo Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhiwei Li
- Department of General Surgery, Dezhou Municipal Hospital, Dezhou 253012, China
| | - Qiangcheng Zeng
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Life Science, Dezhou University, Dezhou 253023, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Shicai Xu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|