1
|
Lee IC, Tumanov S, Wong JW, Stocker R, Ho JW. Integrative processing of untargeted metabolomic and lipidomic data using MultiABLER. iScience 2023; 26:106881. [PMID: 37260745 PMCID: PMC10227420 DOI: 10.1016/j.isci.2023.106881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Mass spectrometry (MS)-based untargeted metabolomic and lipidomic approaches are being used increasingly in biomedical research. The adoption and integration of these data are critical to the overall multi-omic toolkit. Recently, a sample extraction method called Multi-ABLE has been developed, which enables concurrent generation of proteomic and untargeted metabolomic and lipidomic data from a small amount of tissue. The proteomics field has a well-established set of software for processing of acquired data; however, there is a lack of a unified, off-the-shelf, ready-to-use bioinformatics pipeline that can take advantage of and prepare concurrently generated metabolomic and lipidomic data for joint downstream analyses. Here we present an R pipeline called MultiABLER as a unified and simple upstream processing and analysis pipeline for both metabolomics and lipidomics datasets acquired using liquid chromatography-tandem mass spectrometry. The code is available via an open-source license at https://github.com/holab-hku/MultiABLER.
Collapse
Affiliation(s)
- Ian C.H. Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Sergey Tumanov
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jason W.H. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Roland Stocker
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joshua W.K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
2
|
Del Prete E, Campos AM, Della Rocca F, Gallo C, Fontana A, Nuzzo G, Angelini C. ADViSELipidomics: a workflow for analyzing lipidomics data. Bioinformatics 2022; 38:5460-5462. [PMID: 36308459 PMCID: PMC9750127 DOI: 10.1093/bioinformatics/btac706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/29/2022] [Indexed: 12/25/2022] Open
Abstract
SUMMARY ADViSELipidomics is a novel Shiny app for preprocessing, analyzing and visualizing lipidomics data. It handles the outputs from LipidSearch and LIQUID for lipid identification and quantification and the data from the Metabolomics Workbench. ADViSELipidomics extracts information by parsing lipid species (using LIPID MAPS classification) and, together with information available on the samples, performs several exploratory and statistical analyses. When the experiment includes internal lipid standards, ADViSELipidomics can normalize the data matrix, providing normalized concentration values per lipids and samples. Moreover, it identifies differentially abundant lipids in simple and complex experimental designs, dealing with batch effect correction. Finally, ADViSELipidomics has a user-friendly graphical user interface and supports an extensive series of interactive graphics. AVAILABILITY AND IMPLEMENTATION ADViSELipidomics is freely available at https://github.com/ShinyFabio/ADViSELipidomics. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Fabio Della Rocca
- Institute for Calculus Applications ‘M. Picone’, CNR, 80131 Naples, Italy
| | - Carmela Gallo
- Institute of Biomolecular Chemistry, CNR, 80078 Naples, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, CNR, 80078 Naples, Italy,Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy
| | - Genoveffa Nuzzo
- Institute of Biomolecular Chemistry, CNR, 80078 Naples, Italy
| | | |
Collapse
|
3
|
Hoffmann N, Mayer G, Has C, Kopczynski D, Al Machot F, Schwudke D, Ahrends R, Marcus K, Eisenacher M, Turewicz M. A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites 2022; 12:584. [PMID: 35888710 PMCID: PMC9319858 DOI: 10.3390/metabo12070584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/13/2022] Open
Abstract
Mass spectrometry is a widely used technology to identify and quantify biomolecules such as lipids, metabolites and proteins necessary for biomedical research. In this study, we catalogued freely available software tools, libraries, databases, repositories and resources that support lipidomics data analysis and determined the scope of currently used analytical technologies. Because of the tremendous importance of data interoperability, we assessed the support of standardized data formats in mass spectrometric (MS)-based lipidomics workflows. We included tools in our comparison that support targeted as well as untargeted analysis using direct infusion/shotgun (DI-MS), liquid chromatography-mass spectrometry, ion mobility or MS imaging approaches on MS1 and potentially higher MS levels. As a result, we determined that the Human Proteome Organization-Proteomics Standards Initiative standard data formats, mzML and mzTab-M, are already supported by a substantial number of recent software tools. We further discuss how mzTab-M can serve as a bridge between data acquisition and lipid bioinformatics tools for interpretation, capturing their output and transmitting rich annotated data for downstream processing. However, we identified several challenges of currently available tools and standards. Potential areas for improvement were: adaptation of common nomenclature and standardized reporting to enable high throughput lipidomics and improve its data handling. Finally, we suggest specific areas where tools and repositories need to improve to become FAIRer.
Collapse
Affiliation(s)
- Nils Hoffmann
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5), 52425 Jülich, Germany
| | - Gerhard Mayer
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany;
| | - Canan Has
- Biological Mass Spectrometry, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany;
- University Hospital Carl Gustav Carus, 01307 Dresden, Germany
- CENTOGENE GmbH, 18055 Rostock, Germany
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (D.K.); (R.A.)
| | - Fadi Al Machot
- Faculty of Science and Technology, Norwegian University for Life Science (NMBU), 1433 Ås, Norway;
| | - Dominik Schwudke
- Bioanalytical Chemistry, Forschungszentrum Borstel, Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North, German Center for Lung Research (DZL), 23845 Borstel, Germany
- German Center for Infection Research (DZIF), TTU Tuberculosis, 23845 Borstel, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (D.K.); (R.A.)
| | - Katrin Marcus
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany; (K.M.); (M.E.)
| | - Martin Eisenacher
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany; (K.M.); (M.E.)
- Faculty of Medicine, Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Saud Z, Tyrrell VJ, Zaragkoulias A, Protty MB, Statkute E, Rubina A, Bentley K, White DA, Rodrigues PDS, Murphy RC, Köfeler H, Griffiths WJ, Alvarez-Jarreta J, Brown RW, Newcombe RG, Heyman J, Pritchard M, Mcleod RW, Arya A, Lynch CA, Owens D, Jenkins PV, Buurma NJ, O'Donnell VB, Thomas DW, Stanton RJ. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J Lipid Res 2022; 63:100208. [PMID: 35436499 PMCID: PMC9010312 DOI: 10.1016/j.jlr.2022.100208] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.
Collapse
Affiliation(s)
- Zack Saud
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andreas Zaragkoulias
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Majd B Protty
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Evelina Statkute
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anzelika Rubina
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kirsten Bentley
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel A White
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | | | - Jorge Alvarez-Jarreta
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard William Brown
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Robert G Newcombe
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Heyman
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Manon Pritchard
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Robert Wj Mcleod
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Arvind Arya
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Ceri-Ann Lynch
- Anaesthetics and Critical Care Directorate, Cwm Taf University Health Board, Royal Glamorgan Hospital, Llantrisant, United Kingdom
| | - David Owens
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - P Vince Jenkins
- Haemostasis Diagnosis and Research, University Hospital Wales, Cardiff, United Kingdom
| | - Niklaas J Buurma
- Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - David W Thomas
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom.
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|