Jiang W, Ye W, Tan X, Bao YJ. Network-based multi-omics integrative analysis methods in drug discovery: a systematic review.
BioData Min 2025;
18:27. [PMID:
40155979 PMCID:
PMC11954193 DOI:
10.1186/s13040-025-00442-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
The integration of multi-omics data from diverse high-throughput technologies has revolutionized drug discovery. While various network-based methods have been developed to integrate multi-omics data, systematic evaluation and comparison of these methods remain challenging. This review aims to analyze network-based approaches for multi-omics integration and evaluate their applications in drug discovery. We conducted a comprehensive review of literature (2015-2024) on network-based multi-omics integration methods in drug discovery, and categorized methods into four primary types: network propagation/diffusion, similarity-based approaches, graph neural networks, and network inference models. We also discussed the applications of the methods in three scenario of drug discovery, including drug target identification, drug response prediction, and drug repurposing, and finally evaluated the performance of the methods by highlighting their advantages and limitations in specific applications. While network-based multi-omics integration has shown promise in drug discovery, challenges remain in computational scalability, data integration, and biological interpretation. Future developments should focus on incorporating temporal and spatial dynamics, improving model interpretability, and establishing standardized evaluation frameworks.
Collapse