1
|
Xie L, Cao B, Wen X, Zheng Y, Wang B, Zhou S, Zheng P. ReLume: Enhancing DNA storage data reconstruction with flow network and graph partitioning. Methods 2025; 240:101-112. [PMID: 40268154 DOI: 10.1016/j.ymeth.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
DNA storage is an ideal alternative to silicon-based storage, but focusing on data writing alone cannot address the inevitable errors and durability issues. Therefore, we propose ReLume, a DNA storage data reconstruction method based on flow networks and graph partitioning technology, which can accomplish the data reconstruction task of millions of reads on a laptop with 24 GB RAM. The results show that ReLume copes well with many types of errors, more than doubles sequence recovery rates, and reduces memory usage by about 60 %. ReLume is 10 times more durable than other representative methods, meaning that data can be read without loss after 100 years. Results from the wet lab DNA storage dataset show that ReLume's sequence recovery rates of 73 % and 93.2 %, respectively, significantly outperform existing methods. In summary, ReLume effectively overcomes the accuracy and hardware limitations and provides a feasible idea for the portability of DNA storage.
Collapse
Affiliation(s)
- Lei Xie
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, PR China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, PR China
| | - Xiaoru Wen
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, PR China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, PR China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, PR China.
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, PR China.
| | - Pan Zheng
- Department of Accounting and Information Systems, University of Canterbury, 8140 Christchurch, New Zealand
| |
Collapse
|
2
|
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, Varshney RK. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 2024; 56:1788-1799. [PMID: 39048791 DOI: 10.1038/s41588-024-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.
Collapse
Affiliation(s)
- Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Manuel Spannagl
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xun Xu
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
3
|
Sato R, Kondo Y, Agarie S. The first released available genome of the common ice plant ( Mesembryanthemum crystallinum L.) extended the research region on salt tolerance, C 3-CAM photosynthetic conversion, and halophilism. F1000Res 2024; 12:448. [PMID: 38618020 PMCID: PMC11016173 DOI: 10.12688/f1000research.129958.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Background The common ice plant ( Mesembryanthemum crystallinum L.) is an annual herb belonging to the genus Mesembryanthemum of the family Aizoaceae, native to Southern Africa. Methods We performed shotgun genome paired-end sequencing using the Illumina platform to determine the genome sequence of the ice plants. We assembled the whole genome sequences using the genome assembler "ALGA" and "Redundans", then released them as available genomic information. Finally, we mainly estimated the potential genomic function by the homology search method. Results A draft genome was generated with a total length of 286 Mb corresponding to 79.2% of the estimated genome size (361 Mb), consisting of 49,782 contigs. It encompassed 93.49% of the genes of terrestrial higher plants, 99.5% of the ice plant transcriptome, and 100% of known DNA sequences. In addition, 110.9 Mb (38.8%) of repetitive sequences and untranslated regions, 971 tRNA, and 100 miRNA loci were identified, and their effects on stress tolerance and photosynthesis were investigated. Molecular phylogenetic analysis based on ribosomal DNA among 26 kinds of plant species revealed genetic similarity between the ice plant and poplar, which have salt tolerance. Overall, 35,702 protein-coding regions were identified in the genome, of which 56.05% to 82.59% were annotated and submitted to domain searches and gene ontology (GO) analyses, which found that eighteen GO terms stood out among five plant species. These terms were related to biological defense, growth, reproduction, transcription, post-transcription, and intermembrane transportation, regarded as one of the fundamental results of using the utilized ice plant genome. Conclusions The information that we characterized is useful for elucidation of the mechanism of growth promotion under salinity and reversible conversion of the photosynthetic type from C3 to Crassulacean Acid Metabolism (CAM).
Collapse
Affiliation(s)
- Ryoma Sato
- Graduate school of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| | - Yuri Kondo
- Graduate school of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| | - Sakae Agarie
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Mo C, Wu Z, Shang X, Shi P, Wei M, Wang H, Xiao L, Cao S, Lu L, Zeng W, Yan H, Kong Q. Chromosome-level and graphic genomes provide insights into metabolism of bioactive metabolites and cold-adaption of Pueraria lobata var. montana. DNA Res 2022; 29:6663990. [PMID: 35961033 PMCID: PMC9397507 DOI: 10.1093/dnares/dsac030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Pueraria lobata var. montana (P. montana) belongs to the genus Pueraria and originated in Asia. Compared with its sister P. thomsonii, P. montana has stronger growth vigour and cold-adaption but contains less bioactive metabolites such as puerarin. To promote the investigation of metabolic regulation and genetic improvement of Pueraria, the present study reports a chromosome-level genome of P. montana with length of 978.59 Mb and scaffold N50 of 80.18 Mb. Comparative genomics analysis showed that P. montana possesses smaller genome size than that of P. thomsonii owing to less repeat sequences and duplicated genes. A total of 6,548 and 4,675 variety-specific gene families were identified in P. montana and P. thomsonii, respectively. The identified variety-specific and expanded/contracted gene families related to biosynthesis of bioactive metabolites and microtubules are likely the causes for the different characteristics of metabolism and cold-adaption of P. montana and P. thomsonii. Moreover, a graphic genome was constructed based on 11 P. montana accessions. Total 92 structural variants were identified and most of which are related to stimulus-response. In conclusion, the chromosome-level and graphic genomes of P. montana will not only facilitate the studies of evolution and metabolic regulation, but also promote the breeding of Pueraria.
Collapse
Affiliation(s)
| | | | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Pingli Shi
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Minghua Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Liuying Lu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huabing Yan
- To whom correspondence should be addressed. Tel. 86-13877165487. (H.Y.); Tel. 86-18942928088. (Q.K.)
| | - Qiusheng Kong
- To whom correspondence should be addressed. Tel. 86-13877165487. (H.Y.); Tel. 86-18942928088. (Q.K.)
| |
Collapse
|
5
|
Ju CJT, Jiang JY, Li R, Li Z, Wang W. TahcoRoll: fast genomic signature profiling via thinned automaton and rolling hash. MEDICAL REVIEW (2021) 2021; 1:114-125. [PMID: 35881666 PMCID: PMC9027990 DOI: 10.1515/mr-2021-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/11/2021] [Indexed: 12/04/2022]
Abstract
Objectives Genomic signatures like k-mers have become one of the most prominent approaches to describe genomic data. As a result, myriad real-world applications, such as the construction of de Bruijn graphs in genome assembly, have been benefited by recognizing genomic signatures. In other words, an efficient approach of genomic signature profiling is an essential need for tackling high-throughput sequencing reads. However, most of the existing approaches only recognize fixed-size k-mers while many research studies have shown the importance of considering variable-length k-mers. Methods In this paper, we present a novel genomic signature profiling approach, TahcoRoll, by extending the Aho-Corasick algorithm (AC) for the task of profiling variable-length k-mers. We first group nucleotides into two clusters and represent each cluster with a bit. The rolling hash technique is further utilized to encode signatures and read patterns for efficient matching. Results In extensive experiments, TahcoRoll significantly outperforms the most state-of-the-art k-mer counters and has the capability of processing reads across different sequencing platforms on a budget desktop computer. Conclusions The single-thread version of TahcoRoll is as efficient as the eight-thread version of the state-of-the-art, JellyFish, while the eight-thread TahcoRoll outperforms the eight-thread JellyFish by at least four times.
Collapse
Affiliation(s)
- Chelsea J.-T. Ju
- Department of Computer Science, University of California, Los Angeles, USA
| | - Jyun-Yu Jiang
- Department of Computer Science, University of California, Los Angeles, USA
| | - Ruirui Li
- Department of Computer Science, University of California, Los Angeles, USA
| | - Zeyu Li
- Department of Computer Science, University of California, Los Angeles, USA
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, USA
| |
Collapse
|